
 

 

 

 

 

 

 

 

 

Copyright 

by 

Nathaniel Raley Woodward 

2018 

 

 

  



The Dissertation Committee for Nathaniel Raley Woodward Certifies that this is the 
approved version of the following Dissertation: 

 

Educational Practices in Large College Courses and Their Effects on 

Student Outcomes 

 

 

 
Committee: 
 
 
 
 
Germine H. Awad, Supervisor 
 
 
 
Andrew C. Butler, Co-Supervisor 
 
 
 
Susan Natasha Beretvas 
 
 
 
Veronica X. Yan 
 
 
 
 
 
 
 



Educational Practices in Large College Courses and Their Effects on 

Student Outcomes 

 

 

by 

Nathaniel Raley Woodward 

 

 

 

Dissertation 

Presented to the Faculty of the Graduate School of  

The University of Texas at Austin 

in Partial Fulfillment  

of the Requirements 

for the Degree of  

 

Doctor of Philosophy 

 

 

The University of Texas at Austin 

August 2018 
  



 iv 

 

Abstract 

 

Educational Practices in Large College Courses and Their Effects on 

Student Outcomes 

 

Nathaniel Raley Woodward, Ph.D. 

The University of Texas at Austin, 2018 

 

Supervisor:  Germine H. Awad 

Co-Supervisor:  Andrew C. Butler 

 

Part I of this study presents a large-scale characterization of normative educational 

practices (e.g., course structure, teaching methods, learning activities) across more than 

1,000 high-enrollment undergraduate courses at a large public institution over the last 5 

years. I assess the extent to which course features reflect educational best-practices by 

systematically reviewing course syllabi—documenting the type, quantity, and grade-

weight of all work assigned in each course as well as the prevalence and variability of 

teaching practices such as group activities, retrieval practice, and in-class active learning. 

I assess the degree to which these variables have changed over time, how they differ across 

colleges, and whether they form distinct clusters. 

I also analyze language used in the syllabus to see how instructors communicate 

information to students. I examine pronouns, comparisons, negations, and words related to 

achievement versus affiliation; I isolate words that unique to certain syllabi, courses, 



 v 

departments, and colleges; and I look at how similar two syllabi from the same course are 

on average. 

Findings revealed that high stakes exams are the norm, active learning is relatively 

uncommon, and students get few opportunities for spaced retrieval practice. Importantly, 

it was found that no one college has a monopoly on educational best-practices; different 

colleges had different strengths. Trends over time were mostly positive, indicating an 

increase in adoption of many best-practices, with a few exceptions. 

Part II of this study builds directly upon Part I by combining the syllabus dataset 

with student records to assess how prerequisite-course features affect student performance 

in their subsequent courses. Specifically, introductory courses high and low in retrieval-

practice requirements were compared using inverse propensity-score weighted regressions 

to improve causal inference. Results showed that additional retrieval practice improved 

students’ performance in their subsequent courses. However, the average treatment effect 

estimates were small and somewhat sensitive to variations in model. Finally, subsequent-

course performance was regressed on the full set of educational relevant variables using 

lasso regression, identifying several variables related to retrieval practice and spacing 

(including number of quizzes and cumulative exams) as important correlates of student 

success. 
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PART I: SYLLABUS REVIEW 

Chapter One:  Introduction 

It has been more than ten years since the U.S. Department of Education’s 

Commission on the Future of Higher Education highlighted the inadequate educational 

outcomes of college graduates across the country and called for greater transparency 

among institutions of higher learning (Spellings, 2006). However, despite this growing 

emphasis on accountability—particularly in the form of student gains on certain 

proficiency measures after completing a year or more of college—the pedagogical features 

of college courses that shape students’ learning experiences remain largely ignored or 

unreported. Though more than 20 million students are enrolled in undergraduate programs 

in America today (NCES, 2016), very little can be said about the type of course schedules, 

teaching practices, classroom activities, and out-of-class assignments that constitute a 

typical college course, to say nothing of how these factors vary within and between 

departments or across universities. That the college classroom has remained something of 

an educational black box is a concern not just for students and parents, but also for 

academia at large: a lack of public understanding about what takes place in undergraduate 

courses and can produce potentially misleading generalizations about the standard college 

classroom experience (e.g., a lecture-then-test format and an instructor who acts as a sage-

on-the-stage; King, 2010).  

This dearth of information notwithstanding, we do know that instructional practices 

have arisen somewhat organically within disciplines, and that this arrangement yields 

certain benefits. Professors spend years becoming content experts in a specific field of 

study and by virtue of this experience they are poised to understand how to teach this 

material to others. The most effective ways of teaching specific subject matter—known as 
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pedagogical content knowledge—are often tacit, picked up from the approaches of their 

own teachers, the difficulties they themselves encountered and surmounted in their own 

deep study of their discipline, and, to the extent that they have teaching experience, their 

own practice in teaching the material (Shulman, 2013).  

While this may seem to be a fine state of affairs, it is important to attend to what is 

missing from it. Shulman notes that “since faculty members in higher education rarely 

receive direct preparation to teach, they most often model their own teaching after that 

which they themselves received” (2005, p. 57). Because college professors typically 

receive little if any formal training as educators, they often lack a scientific understanding 

of human memory, transfer of learning, and how to design their courses in order to promote 

these goals (Halpern & Hakel, 2003). Furthermore, professors usually receive no formal 

evaluations of their teaching effectiveness beyond student ratings course evaluations, a 

problematic metric that may even reward certain teaching practices that undermine 

educational outcomes like long-term retention and transfer (Shevlin, Banyard, Davies, & 

Griffiths, 2010; Stroebe, 2016; Bjork & Bjork, 2011). Overall, this lack of substantive 

feedback leaves instructors with little actionable information about how to improve their 

courses and little incentive to adopt evidence-based practices, especially when those 

practices create more work for themselves and more challenges for their students. 

If the primary goal of higher education is to teach students knowledge and skills 

that remain accessible to them over time and that can be flexibly applied outside of the 

classroom, then instruction should be designed with these goals foremost in mind. 

Fortunately, cognitive and educational psychologists have produced a large body of 

research on learning and memory, and well-replicated findings have come together to yield 

robust principles about how to facilitate desired student outcomes such as long-term 

retention, transfer of learning, metacognitive skills, and motivation. These include things 
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like retrieval practice, spaced/distributed learning, in-class active learning, learning from 

peers, setting clear learning objectives and high expectations, real-world problem solving, 

teacher-student relationships, and motivational factors like providing students choice (see, 

e.g., Dunlosky et al. 2013; Hattie, 2008; Winne & Nesbit, 2010). The extent to which stated 

teaching practices, assignments, course structure, activities, and other information 

appearing in course syllabi accord with these recommendations provides evidence for their 

use in the classroom; at a minimum, their presence in the syllabus suggests some 

knowledge of these best-practices on the part of the instructor, some consideration of their 

use in the classroom, and a stated intention to implement them. 

To address these concerns and to provide a window into what goes on in large 

college courses, Part I of this study presents a large-scale characterization of normative 

educational practices—course structure, teaching methods, learning activities, and other 

educationally relevant variables—across more than a thousand high-enrollment (200+ 

student) undergraduate courses at a large public university over the last 5 years. I assess 

the extent to which these course features reflect educational best-practices drawn from 

research on teaching and learning by using course syllabi to document the type, quantity, 

frequency, and grade-weight of all work assigned to students in a given course, including 

in-class activities, quizzes, exams, and homework. I also document prevalence and 

variability of evidence-based learning activities and teaching practices such as cumulative 

assessments, group assignments, retrieval practice, and in-class active learning. Beyond 

accounting for structural features of a course such as these, which can be taken more or 

less directly from the syllabus, I analyze the language used in the syllabus, the size and 

completeness of the syllabus, and the presence or absence of stated student learning 

objectives to gain further insight into instructors’ manner of communicating with students. 

I explore not only high-level summaries such as the averages of these variables across all 
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courses, but also how these features vary within and between colleges and departments, 

how they vary across different versions of the same course, the degree to which they have 

changed over time, and whether they differ based on course format. 

As Part I of this study is descriptive in nature, no formal hypotheses are presented 

or tested: The aim of Part I is to characterize what goes in large college courses in terms of 

course structure, teaching methods, and learning activities. As such, I report overall counts 

and percentages, relying heavily on graphs to illustrate variability among colleges and 

departments. Furthermore, to give structure to the many dimensions under consideration 

and to aid in the presentation of results, three broad categories of variables will be used: 

(a) the nature, number, and grade weight of all course work completed by students in the 

course; (b) general pedagogical approaches used in the course; and (c) instructor 

communication to students. In addition to these categories, interrelationships among all 

variables and courses are examined, as are changes in these variables over time.  

Part II of this study builds directly upon the work presented in Part I by exploring how 

these variables can impact students’ learning and performance in their subsequence 

coursework. 

EVIDENCE-BASED TEACHING PRACTICES FOR PROMOTING STUDENT LEARNING 

Two of the most useful approaches for promoting long-term retention and transfer 

of learning are the testing effect (practice recalling information from memory; see Roediger 

& Butler, 2011 for review) and the spacing effect (spacing one’s learning out over time 

rather than cramming it into a single session; see Cepeda et al. 2006 for review). The 

generality and effectiveness of these and other techniques emerge from meta-analyses 

looking at the average performance gains across many individual studies (e.g., Hattie, 
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2008). For an in-depth review of these techniques and their educational efficacy, see 

Chapter 5 in Part II of this document. 

These techniques are increasingly well known, appearing as recommended best-

practices in most modern textbooks about college teaching. For example, at the beginning 

of the first chapter of Teaching At Its Best: A Research-Based Resource for College 

Instructors, Nilson (2010) enumerates key teaching principles including spaced retrieval 

practice: “Build into your course plenty of assessment opportunities, including low-stakes 

quizzes, practice tests, in-class exercises, and homework assignments that can tell students 

how much they are really learning, as well as provide them with retrieval practice" (Nilson, 

2010, p. 5). Indeed, representative textbooks by Nilson (2010) and by Svinicki and 

McKeachie (2013) both have sections devoted to facilitating in-class active learning, 

providing frequent assessments, giving timely feedback, setting explicit expectations of 

students that pose reasonable challenges, holding students accountable for their work, and 

teaching students real-world problem solving. As we discuss below, the course syllabus 

can provide valuable information about the extent to which these evidence-based practices 

are being taken into account in college course design. 

DETERMINING EDUCATIONAL PRACTICES FROM COURSE SYLLABI 

Research continues to show that the work students do for a given class (lectures, 

readings, assignments, activities, etc.) is more important for their learning outcomes than 

are professor-level variables such as charisma or teaching experience (e.g., Deslauriers, 

Schelew, & Wieman, 2011). Unfortunately, very few methods exist for collecting this kind 

of data, despite increasing demand for it from high places, such as the National Academies 

of Science, Engineering, and Medicine (2018). 
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Indeed, most colleges and universities do not measure teaching practices at all 

(Wieman & Gilbert, 2014); the only teaching-related data that is routinely collected are 

student evaluations on end-of-course surveys and evaluations, but even these are of 

questionable value and may even reward ineffective teaching practices (Stroebe, 2016). A 

more informative method is the classroom observation, and several protocols for its use in 

undergraduate education have been developed. However, observations are inherently 

limited—often to what goes on in a single day’s course—and activities and teaching 

practices can vary greatly from day to day. Furthermore, they capture only elements of 

teaching that can be observed by watching a class in session (and are thus relatively silent 

about things like course schedules, grading policies, and out-of-class assignments). Finally, 

course observations are time and resource intensive, requiring trained observers to 

accurately characterize hours of class time.  

To help address the lack of sound and efficient methodological approaches for 

assessing teaching in undergraduate education, Wieman and Gilbert (2014) developed the 

72-item Teaching Practices Inventory (TPI), a self-report measure which instructors can 

use to evaluate their own teaching. These items span eight categories: the course 

information provided (including learning objectives), supporting material provided, in-

class features and activities, assignments, feedback and testing, training and guidance of 

TAs, collaboration or sharing in teaching, and a general “other” category, which are 

mapped in various ways to learning best-practices. This sort of approach has many 

advantages, including ease of administration and scoring, implicit feedback to instructors 

about what they are doing and how they could improve, and richer data about what goes 

on in a course (e.g., “Do teaching assistants receive one-half day or more of training in 

teaching?”). The chief disadvantage is the self-report nature of the method, which could be 

especially problematic if it is perceived as going in one’s tenure file, or really having any 
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professional stakes at all. The human tendency to remember one’s own words and deeds 

(and teaching) in a personally favorable light is one to which professors are not immune; 

the more subjectivity is allowed and the higher the perceived stakes, the more room there 

is for these self-serving and social-desirability biases to skew results (e.g., Donaldson & 

Grant-Vallone, 2002; Williams, Walter, Henderson, & Breach, 2015). 

In their article, Wieman and Gilbert (2014) note that “the TPI is not inherently a 

self-reporting instrument. In most cases, it is easy for another person to determine the 

correct responses by looking at course materials and instructor class notes” (p. 555). This 

suggestion was the impetus for our approach to the problem of measuring educational best-

practices that bypasses self-report: using the course syllabus to document course-level 

variables and to infer teaching practices. As will be discussed below, public institutions of 

higher education in Texas are required by state law to make every undergraduate course 

syllabus (and instructor curriculum vitae) available to the public online through the 

institution’s website (H.B. 2504, 2009), which makes the accessibility of such materials a 

non-issue.  

To the extent that course syllabi provide an accurate record of what students do in 

a given course (e.g., the activities and assignments that students must complete), they can 

yield important insights into the quality of course pedagogy. Thus, it is incumbent on me 

to discuss the purpose of the syllabus in higher education, to provide examples of how 

syllabus data has been used in previous research, and to address the validity of such an 

approach. This approach is based on the notion that teaching practices and other course-

level variables are a more accurate proxy for educational effectiveness than anything else 

that can be practically measured in undergraduate education (Wieman, 2015). 

Instructors write syllabi to convey the content and organization of their course to 

students and to serve as a written record of its important features. They describe the 
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sequence of topics that will be covered, the assignments and assessments that students will 

be accountable for, and the criteria according to which students' grades will be determined. 

Increasingly, the syllabus has taken on the status of a legally binding document that 

stipulates all the conditions of the course that must be met in order to achieve a certain 

grade—to the degree that a popular handbook for college teaching, currently in its 14th 

edition and cited many thousands of times, plainly states “the syllabus is a contract between 

you and your students” (Svinicki & McKeachie, 2013, pg. 24). The syllabus is a key part 

of good course-design in undergraduate education (e.g., Svinicki & McKeachy, 2013; 

Nilson, 2010) and, as it turns out, good instructors tend to have good syllabi. Lough (1997) 

surveyed syllabi from courses given by winners of the prestigious Carnegie Professor of 

the Year Award, a program created to recognize outstanding undergraduate instructors. He 

found that almost all of these syllabi contained well-defined course objectives, detailed 

schedules for assignments, and descriptions of grading procedures; most also included 

expectations for class participation and suggestions for how to study in order to be 

successful. Though some syllabus content may be constrained by institutional requirements 

(e.g., course name, instructor contact information, office hours; see Figure 1) or influenced 

by departmental convention, instructors often have as much control over what appears in 

their syllabus as they do over what goes on in the course itself. 
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Figure 1 Required elements for class syllabi at UT Austin per the University's 
Academic Policies and Procedures. (Accessed 7/12/2018 at the following 
URL: http://catalog.utexas.edu/general-information/academic-policies-and-
procedures/class-syllabi/) 

PRECEDENTS FOR SYLLABUS REVIEW 

Reviewing syllabi for variables of interest is often used for institutional review 

purposes at the university level, especially to evaluate the impact of new initiatives or 

programs. For example, Graves, Hyland, and Samuels (2010) collected a syllabus from 

every course offered over an academic year at one small liberal arts college and analyzed 

them to determine the frequency, variability, and characteristics of writing assignments 
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that students were being assigned within and across departments. This produced useful 

summary information, such as the average number of writing assignments per course, the 

average length of the assignment in pages, and the most common types of writing 

assignments. It also enabled these authors to examine how assignments changed across the 

4-year curriculum and how they varied by discipline. In addition to their role in institutional 

reviews, syllabi have also been used to compare across universities: Corlu (2013) coded 

course syllabi to assess teaching practices across accredited and non-accredited STEM 

programs, finding benefits for accredited programs that were attributable to the impact of 

the accreditation process on instructors.  

A few researchers have used syllabi to assess the prevalence of teaching best-

practices at their institutions. For example, Cullen and Harris (2009) created a rubric for 

assessing the degree of learner-centeredness of courses from their respective syllabi. They 

looked at variables related to increasing contact between student and teacher, encouraging 

cooperation among students, employing active learning strategies, and providing feedback 

to students. This rubric was then used to assess the degree of learner-centeredness of 

courses offered by professors who were working with the Center for Teaching and 

Learning and was ultimately used to inform professional development at their institution.  

In perhaps the most comprehensive syllabus analysis to date, Stanny, Gonzalez, 

and McGowan (2015) developed a rubric for coding syllabi to gather information about the 

extent to which a course was learning-centered. This included things like stated student 

learning outcomes, the extent to which these outcomes were assessed, and the presence of 

instructional practices that promote active learning (e.g., flipped-classroom structure, class 

discussions, making presentations); these variables were then combined into composite 

assessments of syllabus quality to look at changes over time. The authors also examined 

compliance with university syllabus guidelines, providing a framework for rubric 
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development and training of coders. They also developed guidelines for coding and inter-

rater reliability: for instance, in their rubric development and training process, these authors 

found that coders performed more consistently when they made discrete judgments about 

variables (e.g., presence of group work, number of group work activities) versus judgments 

about a global rubric element (e.g., degree of student engagement).  

These studies demonstrate how syllabi can be reliably coded according to a well-

developed rubric, producing a rich dataset that can be used to answer questions about 

teaching and learning in college classrooms. Unfortunately, in both of these studies very 

little was done with this data! The authors reported only overall averages for composite 

variables such as “student engagement” and did not attempt to explore variability between 

or within departments across these variables. Furthermore, to the best of my knowledge, 

such course-level variability derived from syllabi has never been used to examine student-

level outcomes that may be associated with such variability. Thus, the utility of such an 

approach has been demonstrated, providing a useful method for using syllabi to 

characterize normative educational practices in college courses. 

SYLLABUS VALIDITY 

There are several reasons to feel confident that contents of syllabi accurately reflect 

classroom practices at the University of Texas at Austin. First, per Texas House Bill 2504 

passed in the eighty-first Legislative Session (2009), all instructors must make their syllabi 

publicly available online. This outside scrutiny makes it more likely that instructors will 

be thoughtful and thorough in constructing their syllabi. Secondly, and perhaps more 

importantly, the University of Texas views a syllabus as a contractual document. For 

example, to have a grade appeal considered by the Dean of Student Affairs, the first 

criterion on the Grade Appeals Form is “Instructor violated the terms of the syllabus” and 
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a copy of the original course syllabus is required component of the appeal. Thus, instructors 

have strong incentives to take syllabus-creation seriously and to describe teaching practices 

and learning activities that reflect the true structure of the course.  

Furthermore, UT Austin requires that specific information be included on every 

syllabus for every course taught at the university (Figure 1). Among these requirements are 

grading and attendance policies, a description of exams and assignments, a calendar of due 

dates, and a list of course materials. More surprisingly, instructors are required to describe 

“the subject matter of each lecture or discussion, and the academic/learning goals for the 

course and how they will be assessed.” Because these aspects of a syllabus are mandatory, 

because all syllabi are submitted to the university before the start of the course and made 

publicly available, and because students can ground their grade appeals in terms of 

deviations from the information stated in the syllabus, I feel strongly that the course 

structure and learning activities described in the syllabus reflect what goes on in the 

classroom. That being said, the syllabus is still at best an indirect measure of classroom 

practices; it will be relatively silent on things like the quality of instructors' assignments 

and activities, their overall effectiveness as teachers, or how faithfully they adhere to the 

calendar they developed. Still, the presence of information about educational practices in 

syllabi is, at minimum, indicative of professors’ intentions; based on what they choose to 

include, it is possible to glean aspects of their teaching style, their attitude towards students, 

and their conceptualization of the course. By the same token, absence of such features 

indicates a lack of intention, and perhaps even a lack of awareness of what constitutes an 

effective learning environment. 
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Chapter Two:  Procedure and Methods 

DOWNLOADING  SYLLABI FOR CODING 

All syllabi were downloaded from publicly accessible university webpages. All 

syllabi were pulled for courses of interest by searching for the course name and using a 

batch-downloading browser plug-in to save all PDF files locally. These were then uploaded 

to a project folder in UT Box for secure access. The syllabi were accessed via the following 

URL: https://utdirect.utexas.edu/apps/student/coursedocs/nlogon. Initially, the top 50 

highest-enrollment courses at UT Austin were considered, resulting in over 4000 syllabi. 

Focusing coding efforts on courses with greater than 200 students resulted in a more 

manageable set of 1104 syllabi from 136 courses, 306 instructors, 49 departments, and 13 

colleges at UT Austin, from Spring 2011 to Spring 2016. Due to lack of representation 

across colleges and semesters, this count was ultimately pared to 1075 (see Analysis 

section). 

CREATING THE CODEBOOK  

The coding scheme, or codebook, was developed primarily through collaborative 

discussions between myself (the author), my advisor and co-supervisor Dr. Andrew Butler, 

and Dr. Stephanie Corliss, a former HDCLS graduate who worked for the UT Faculty 

Innovation Center and lead related initiatives for Project 2021; the final codebook was 

finalized by Dr. Corliss and approved by Project 2021, other members of whom will have 

access to some of the syllabus data for their own purposes. During development, our goal 

was to capture as much information as possible from the syllabus by creating variables that 

were exhaustive yet relatively easy to code for. We included three types of variables: forced 

choice (e.g., Yes/No), numeric entry (e.g., 15, .75), and text entry (e.g., a written 

description of an assignment). For the complete codebook, see Appendix A. 
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Basic course information  

This category consists of standard information about the course, including items 

that are required by the university to appear in every course syllabus (see Figure 1). This 

includes information such as the course department, course number, semester, unique ID, 

course times and dates, room building and number, instructor's name, co-instructors or 

multiple sections if applicable, instructor office hours, number of TAs, and TA office 

hours. These variables were coded for by hand and, where appropriate, cross-checked 

against data pulled from a university database, from which other information was 

incorporated such as which flags the course carried (if any) and whether the course was a 

core course. Course flags are additional graduation requirements: they are carried by 

courses that provide enriched coverage of high-demand skills (e.g., cultural sensitivity, 

ethical decision-making, quantitative reasoning), while core courses are those required for 

all students regardless of major. 

Learning objectives  

The presence of learning objectives for each of three outcomes (knowledge, skills, 

and socio-emotional) were recorded. For each syllabus, it was required to specify whether 

each learning outcome was stated, suggested, or not present, and to copy the language 

directly from the syllabus on which these coding decisions were based. As this is one of 

the most subjective judgments that coders have to make (particularly, discriminating 

between stated and suggested objectives), we wanted to document the language from the 

syllabus in case review becomes necessary. 

Course format and resources  

The format of the course (face-to-face, online, or hybrid) was recorded. Presence 

of a list of course topics and whether or not the list included dates was noted. We also 
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coded for the presence or absence of course resources provided or assigned to students, 

including those focused on reading, watching, or doing. We also record descriptions of 

each (e.g., textbooks, articles; films, TED talks; visiting a museum, seeing a play, 

respectively). Other course-level variables include community learning opportunities (TA-

led review sessions outside of class; support for study groups), whether social media was 

integrated into the course (e.g., course Facebook account, course Twitter hashtag), whether 

a Learning Management System (e.g., Canvas, Blackboard, Moodle) was mentioned, and 

whether or not the instructor described their course as a “flipped classroom.” 

Coursework variables  

Information about coursework (homework, in-class assignments, quizzes, exams, 

projects/presentations, class participation, and extra-credit opportunities) is being 

systematically recorded from each syllabus. We document all components that contribute 

to overall course grade, as detailed below. In addition to graded coursework, we coded for 

whether in-class active learning was used (any mention of doing something during class 

besides listening to lecture) and the type of active-learning activities; whether informal 

retrieval practice was incorporated (e.g., availability of optional practice questions or old 

exams, iClickers or other student-response systems used informally in class) and the type 

of informal retrieval practice; whether students had to complete projects or make 

presentations; and whether there were any group assignments or collaborative participation 

requirements. 

Exams and final exams. 

Exams are defined as large assessments administered in-class that are referred to as 

“exams” or “tests” in the syllabus. Final exams are defined as any exam that the professor 
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calls a “final” exam, as well as any exam that is scheduled during the designated final exam 

period according to the course calendar. The number of exams, the percent that exams 

contribute to the overall course grade, the format of exams (multiple choice, short answer, 

and/or essay questions), whether or not exams were cumulative; also, coded separately was 

whether a final exam was given, the percent that the final exam contributes to the overall 

course grade, the format of the final exam, and whether or not it was cumulative. 

Other pertinent information about exams was coded for: whether there was a 

calendar of all exam dates, whether students get to drop their lowest exam score, whether 

they get a re-test opportunity, and whether there is some sort of alternative exam weighting 

scheme (e.g., lowest exam replaced with average of highest two exams). The nature of such 

alternative weighting was described in the notes. A composite variable was created called 

grade choice which indicated if any of the latter three grade-choice related variables were 

applicable. 

Quizzes 

Quizzes are defined as short assessments that take place during class. The number 

of quizzes, the percent that quizzes contribute to the overall course grade, the type of 

questions featured on quizzes (multiple choice, short answer), and the delivery method of 

the quiz (electronic or paper-based) was also recorded. “Quizzes” that were assigned for 

homework were coded as homework, not as quizzes, and this was noted in the “Type of 

Homework Assignments” variable. 

In-class assignments  

In-class assignments are defined as work that students complete during class-time 

that receives an actual grade (i.e., not just a participation grade). We record the number of 
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in-class assignments, the percent that they contribute toward the overall course grade, and 

a brief description of the type(s) of in-class assignments.  

Homework 

Homework assignments were defined as any graded work that students were 

required to complete outside of class. This broad definition covered everything from 

problem-sets and on-line homework modules to large essays and take-home exams. The 

number of homework assignments, the percent that homework contributes to the overall 

course grade, and the types of homework assignments were all recorded. Care was taken 

to be specific when noting the types of homework assignments: for example, in a course 

with weekly journal responses and two important essays, it was noted that there were 15 

journal assignments worth 20% of the course grade, and 2 essays worth 50% of the course 

grade. This allowed us to have the homework category serve as a catch-all for all work 

done outside the class while still preserving as much information as possible about the 

different types of assignments students were required to do. 

Participation 

Participation is defined as anything that counts toward students’ overall course 

grade that is not individually graded. This includes attendance and grades given for 

completion of assigned work. No assignments graded for accuracy were coded as 

participation.  

FINALIZING VARIABLES AND CREATING COMPOSITES  

Several composite variables were created a priori from the raw coded variables. As 

stated in the codebook, syllabi were originally coded for whether learning objectives were 

stated outright or only suggested by syllabus language, but reliabilities for this distinction 
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were low. Therefore, for each type of learning objective—knowledge, skills, socio-

emotional—a new binary variable was created by combining stated and suggested to 

indicate either whether the learning objective was present at all. Second, Flag Course was 

a binary variable created to indicate whether the course carried any UT flag status. Third, 

instructor office hours and TA office hours were recorded as numeric variables, but binary 

variables were created to indicate the presence of any instructor or TA office hours in the 

syllabus. Also, to reflect the amount of control students have over the grading structure, a 

variable called Grade Choice was computed to take the value 1 (zero otherwise) if the 

course allowed students to (a) retake exams, (b) drop their lowest exam score, or (c) 

exercise choice in how individual assessments/assignments would be weighted in the 

calculation of their final grade. 

Because retrieval practice was of particular interest in both Part I and Part II of this 

study, individual variables were created to reflect the total number and grade percentage of 

all graded retrieval practice opportunities in a course by combining the number and grade 

percentage of exams and quizzes. As I discuss in more detail below, across all courses the 

median value for total graded retrieval practice opportunities was 4. If the number of graded 

retrieval practice opportunities was greater than or equal to 5, the new variable High 

Graded RP took the value 1 and was 0 otherwise. Similarly, a variable High Stakes was 

created to indicate when large proportion of the course grade came from relatively few 

assignments. The median value for exam grade percentage was 75%, and a course was 

considered high stakes if at least 75% of the grade came from performance on 4 or fewer 

exams. 

Finally, for each course-grade component (homework, quizzes, exams, and in-class 

assignments), the percent each contributed to the total course grade was divided by the total 

number of each, yielding new variables reflecting the percent of grade per homework 
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assignment, quiz, exam, and in-class assignment. Lastly, where appropriate, nominal 

variables scored Yes/No/Unclear were dichotomized into binary variables taking the value 

1 when “Yes” and 0 otherwise. 

CODING OF SYLLABI 

Two outside coders were trained to use the codebook until they reached 90% 

agreement on all variables. After reaching this criterion, they worked under supervision of 

the author, accessing syllabi through a secure online storage platform. Inter-rater reliability 

of syllabus coding was performed by independently re-coding a subset of the syllabi (n = 

50) and assessing the degree of agreement with the primary coders. Reliability was 

calculated using both percent agreement and Cohen’s Kappa for each categorical variable, 

and intraclass correlations (ICC; fixed, one-way) for each numeric variable. A sample of 

fifty syllabi have been re-coded in such a manner, demonstrating acceptably high reliability 

for variables of interest (see Table 1). 
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Table 1 Inter-rater reliability calculations for syllabus variables of interest 
 

Codebook Variable % Agreement Cohen's Kappa ICC (95% CI) 
    

Course Format 1.00 1.00 - 
Instructor Office Hours 1.00 1.00 - 
# Office Hours 0.95 0.94 - 
Course Resources: Reading 1.00 1.00 - 
Course Resources: Watching 0.95 0.64 - 
Course Resources: Doing 0.89 0.79 - 
Social Media 1.00 1.00 - 
Learning Management System 0.89 0.47 - 
Community Learning Ops 0.89 0.79 - 
SLOs: Knowledge 0.95 0.85 - 
SLOs: Skills 0.79 0.68 - 
SLOs: Socio-Emotional 0.79 0.52 - 
List of  Topics 1.00 1.00 - 
Dates for Topics 0.95 0.85 - 
# Exams - - 1.00 
% Exams - - 0.996 (0.993,0.998) 
Cumulative Exams 0.95 0.64 - 
Drop Lowest Exam Score 1.00 1.00 - 
Re-Test Opportunity 1.00 1.00 - 
% Final Exam - - 1.00 
Cumulative Final Exam  0.95 0.92 - 
Alternative Weighting 0.68 0.26 - 
Calendar of Exam Dates 1.00 1.00 - 
Calendar of Assignment Due Dates 0.89 0.69 - 
# Quizzes - - 1.00 
% Quizzes - - 1.00 
# In-Class Assignments - - 1.00 
% In-Class Assignments - - 1.00 
In-Class Active Learning 0.95 0.88 - 
Informal Retrieval Practice 0.89 0.83 - 
Projects or Presentations 1.00 1.00 - 
% Participation  - - 0.76 (0.579,0.865) 
Attendance Enforced 0.95 0.87 - 
# Homework - - 0.87 (0.768,0.931) 
% Homework - - 0.95 (0.909,0.974) 
Flipped Classroom 1.00 1.00 - 
Extra Credit 0.95 0.90 - 
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ANALYSIS 

As Part I of this study is descriptive in nature with few a priori hypotheses, 

significance testing was of minor importance and used primarily to narrow the scope of 

relationships among variables. Given our sample, it is trivial to reject the null-hypothesis 

of equal means (or independent groups) among colleges/departments on each of these 

dimensions, and given the number of relationships there are to explore, multiple 

comparisons would quickly become an issue. Therefore, descriptive statistics are reported 

(e.g., counts, proportions, means, correlations), graphs are relied upon heavily to illustrate 

macro-level variability and interrelationships, and whenever tests are reported, the 

familywise error rate is considered and robust (heteroskedasticity-consistent) standard 

errors are used. 

After a general overview, results will be organized into sections based on groups of 

related variables to aid in presentation. Each section presents overall descriptive statistics 

for the pertinent variables as well as a breakdown of each variable by college. Notable 

correlations among variables are also discussed. The final three sections zoom back out to 

address changes across variables over time, clustering of variables and courses, and the 

language used in the syllabi. 

Correlations.  

As stated above, correlations among all variables of interest were computed: when 

both variables were numeric, Pearson’s correlation coefficient was computed; when both 

variables were binary, a tetrachoric correlation was computed; when one variable was 

numeric and one was binary, a biserial correlation was computed. These pairwise 

correlations were computed using the hector() function from R package polycor. Because 

39 variables were of interest, !"#$ % = 741 correlations were computed, and because all 
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correlations were explored as potentially interesting, a conservative alpha level of 0.00005 

was used to control for multiple comparisons and to narrow the space of possible 

relationships to consider for the purposes of this investigation. Note that this is 

approximately the same as considering only those correlations that more than 4 standard 

errors away from zero. All tests were two-sided, as the implied null hypothesis is non-

directional. Because there are many degrees of freedom owing to a large sample size, even 

this stringent criterion leaves 174 correlations that are statistically distinguishable from 

zero. For the sake of brevity, in what follows only a summary of these significant effects 

is presented. 

Factor analysis and clustering 

 An exploratory factor analysis (EFA) of course variables was conducted on the 

correlation matrix described above (i.e., including polychoric, biserial, and Pearson’s 

correlations where appropriate) using principal-axis factoring. Note that this is technically 

a factor analysis of mixed data (FAMD) which extends beyond the EFA framework.  

However, it is not an unreasonable approach for descriptive, exploratory purposes (Pagès, 

2014; Revelle, 2017). The number of factors to extract was decided upon by comparing the 

results of parallel analysis to an empirical scree plot. A Varimax rotation of the factor 

solution was performed to achieve simple structure. Note that several variables are binary  

Clustering of course syllabi was performed using a subset of the variables that were 

used to compute correlations. An alternative to cluster analysis would have been to 

compute estimated factor scores for each syllabus, but this was not feasible because the 

variables used were of mixed type (i.e., nominal and continuous). However, the traditional 

k-means clustering algorithm cannot be used with categorical variables because they are 

discrete, rather than continuous, and the Euclidean distance computed on such variables is 
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not meaningful. A common way around this is to use Gower’s dissimilarity algorithm 

(Gower, 1971; Podani, 1999), which computes distances appropriate for each type of 

variable, and then to apply a clustering method suitable for distance matrices. A widely 

used choice is partitioning around medoids (PAM), which is conceptually similar to k-

means but uses medoids instead of centroids. To perform this analysis, the R package 

cluster was used; the function daisy() was used to compute the dissimilarity matrix, and 

the function pam() was used to perform the clustering. The number of clusters was chosen 

based on average silhouette width. Visualization was done using t-Distributed Stochastic 

Neighbor Embedding (t-SNE), a nonlinear dimensionality reduction technique useful for 

visualizing relationships in high-dimensional data (Maaten & Hinton, 2008). 

Text mining and sentiment analysis of syllabi 

 Syllabi were converted to plain text files with ASCII encoding using the Linux 

command-line utility pdftotext. These text files were first processed using Linguistic 

Inquiry and Word Count (LIWC) software (LIWC2015; see Tausczik & Pennebaker, 2010; 

Pennebaker, Boyd, Jordan, & Blackburn, 2015). Beyond providing basic counts of words 

(or prepositions, articles, etc.) in each syllabus, the software also compares text against 

several validated, psychologically meaningful dictionaries; in general, output from the 

software takes the form of the percentage of the total words in the document that also 

appear in each dictionary, though there are several variables that are not dictionary based, 

including the average number of words per sentence, the percent of words that are standard 

dictionary words, and the number of words that are six letters or longer.   

In addition, LIWC generates four summary variable scores, reported as percentiles 

based on a large norming sample of various kinds of text (blogs, expressive writing, novels, 

natural speech, newspaper articles, tweets from Twitter). These variables are analytical 
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thinking, clout, authenticity, and tone. Analytical thinking is a variable that indexes logical 

thought and formality of writing, where lower scores indicate a more informal, narrative 

style (Pennebaker, Chung, Frazee, Lavergne, and Beaver, 2014). Clout is a variable that 

indexes confidence and leadership in speech or writing; it was developed from several 

studies of interpersonal interactions (Kacewicz, Pennebaker, Davis, Jeon, & Graesser, 

2013). Authenticity is a variable that indexes personability, humility, and vulnerability in 

speech or writing; it was developed from several studies in which people were acting 

honestly or deceptively (Newman, Pennebaker, Berry, & Richards, 2003). Tone is a 

variable that summarizes the emotional valence of speech or writing (Cohn, Mehl, & 

Pennebaker, 2004), with higher scores reflecting a more positive tone. 

Though the software reports some 90 variables by default, for the present analysis 

we are interested in those mentioned above and also the percentage of various pronouns 

used in each syllabus (first-person singular, first-person plural, and second person), the 

percentage of comparative words (e.g., greater, best, after) and negation words (e.g., no, 

not, never), and whether the course syllabus has an achievement focus (using words like 

win, success, and better) or an affiliation focus (using words like ally, friend, and social).  

Finally, in addition to comparisons among colleges, LIWC variable scores 

computed on syllabi will be compared to average scores for different types of texts that are 

included with the LIWC2015 software (specifically, blogs, expressive writing, natural 

speech, novels, New York Times articles, and Twitter data). Comparisons drawn will 

illustrate the extent to which syllabi are similar to (or different from) various kinds of text 

on all dimensions under consideration. For additional details on these norms, see 

Pennebaker, Boyd, Jordan, and Blackburn (2015). 

Because LIWC takes raw text files as input (and thus performs no pre-processing, 

such as the deletion of stopwords), several more analyses were conducted after cleaning 
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the syllabus text data. All text contained in each syllabus file was parsed into individual 

words and cleaned, during which punctuation, URLs, stopwords, numbers, and whitespace 

were removed using the R packages tm and tidytext. The remaining terms were transformed 

into a large document-term matrix (1,075 documents by 14,827 terms) with each cell 

containing a count of the total time that a given term appeared in a given document. For 

each of these raw counts, the term frequency-inverse document frequency (tf–idf) was then 

computed. For every pairwise comparison of syllabus tf–idf vectors, their cosine similarity 

was computed. These pairwise cosine similarities of tf–idf vectors measure how strongly 

two syllabi resemble each other in terms of the words they use and how unique those words 

are relative to those used in other syllabi. 

Term frequency–inverse document frequency (tf–idf)  

Briefly, term frequency (*+,,.  ) is the number of occurrences of a term t in a 

document d, divided by the total number of terms in that document. Terms appearing 

frequently in a document will have higher term frequency than those appearing less 

frequently, and they are normalized to sum to 1 within a document. The inverse document 

frequency (/0+ t) of a term is the ratio of the total number of documents N to the document 

frequency dft (i.e., the number of documents d that contain the term t), and typically the 

logarithm of this quotient is used. This represents how uncommon a term is among a set of 

documents: the idft of a term appearing only in a few documents will be high, while the idft 

of a term appearing in many documents will be low. For a given term in a given document, 

the tf–idf is the product of each of these quantities (*+/0+ = 	*+	 × 	/0+). This quantity 

indexes how unique a term is to a specific document in a collection: High tf–idf is achieved 

by high term frequency (i.e., the term is common in a given document) and/or low 
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document frequency (i.e., the term is uncommon in the whole collection of documents). 

Because /0+ = 345(7/0+) is always greater than 0, so too is tf–idf.  

Cosine similarity 

At this point, each document can be considered a vector of tf–idf scores for each 

term in the overall collection of terms (for terms not appearing in a document at all, tf is 

zero and so too is tf–idf). Similar documents will have similar tf–idf vectors; there are 

many ways to compute document similarity, but a common approach is to compute the 

cosine similarity of tf–idf vectors. In information retrieval and text analysis, cosine 

similarity of tf–idf vectors is a commonly used measure of how similar two or more 

documents are in terms of their most important words (e.g., Singhal, 2001), and in cluster 

analysis, cosine similarity can be used to measure how cohesive clusters of data are (e.g., 

Tan, Steinbach, & Kumar, 2005). The cosine similarity for a pair of vectors is computed 

by dividing the dot product of the two vectors by each vector’s magnitude, yielding a value 

that corresponds to the cosine of the angle between the two vectors. For positive valued 

vectors such as document tf–idf vectors, the cosine similarity is bounded in [0, 1]; when 

the cosine is one, the angle between the two vectors is zero, indicating perfect similarity 

(i.e., identical documents). 

After cosine similarity was computed for all pairwise comparisons of tf–idf vectors, 

these values could be averaged by department, by college, and over time. However, this is 

potentially misleading if one department or college offered many sections of each of a 

small number of courses (resulting in greater average similarity) while another offered 

fewer sections of a greater number of courses (resulting in less average similarity). One 

way around this is to only average the within-course cosine similarities (e.g., only those 

comparing a CH 301 syllabus to other CH 301 syllabi), thus resulting in departmental and 
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college-level averages of how similar each course is across sections. Furthermore, we look 

at averages of within-course cosine similarities by semester, in case there are cross-

department or cross-college differences in the number of semesters a given instructor 

teaches a given course; if there are, then departments where the same instructors taught the 

same courses for more semesters would look like their syllabi were more similar.  

Sentiment analysis 

 One common and relatively simple approach to analyzing the sentiment of a 

document is to break the text down into its constituent words, classify each word as 

positive/negative or assign each word a sentiment polarity score (e.g., an 11-point scale 

from -5 = very negative to 5 = very positive), and consider the sentiment of the whole 

document to reflect the sum of the sentiment content of the individual word. 

Several sentiment lexicons exist that are commonly used to conduct sentiment 

analysis in this way: the bing lexicon (Hu & Liu, 2004), AFINN (Nielson, 2011), and the 

NRC Word-Emotion Association Lexicon (Mohammad & Turney, 2013). The bing lexicon 

consists of 6,788 words labeled as having either positive or negative sentiment. The AFINN 

consists of 2,476 words and phrases manually scored by the author of the lexicon from -5 

(very negative) to 5 (very positive). The NRC consists of 6,458 words and their associations 

(0 = not associated, 1= associated) with eight basic emotions (anger, fear, anticipation, 

trust, surprise, sadness, joy, and disgust) and two sentiments (negative and positive), which 

were crowdsourced through Amazon Mechanical Turk. Validation of each sentiment 

lexicon was carried out either by crowdsourcing or by using text from restaurant reviews, 

movie reviews, or Twitter data. To the extent that syllabus text differs in kind from the 

sorts of texts these lexicons were validated on, results of this sentiment analysis are 

qualified and should be viewed as exploratory in nature. 
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All three of these lexicons were used to compute sentiment scores for each syllabus; 

these sentiment scores were then averaged across colleges, much like what was done with 

similarity scores. The average percentage of words per syllabus associated with each of the 

eight NRC categories, and the average ratio of positive-valence to negative-valence words 

(or average document score in the case of the AFINN) are shown for each of the lexicons. 
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Chapter Three:  Results 

Syllabi (N=1104) from all high-enrollment courses from 2011-2016 were collected 

and coded as described above. There was only a single unique syllabus from a single course 

the following colleges: Social Work, Information, Architecture, and Pharmacy. In each 

case, the course was taught by the same instructor each semester as well. Furthermore, 

there were anomalously few syllabi from the first, last, and summer semesters: There was 

only a single syllabus from Spring 2011, only three unique syllabi from Fall 2016, and only 

two syllabi from a single summer semester. Excluding syllabi a priori on these grounds 

left a final sample of 1075 syllabi from long semesters ranging from Fall 2011 to Spring 

2016, representing 9 colleges, 45 departments, 132 unique courses, 303 instructors, and 

368 unique instructor-course combinations. See Table 2 for a breakdown of syllabi counts 

by college, year, and semester (note abbreviations). 

 Courses in the syllabus dataset had an average total enrollment of 287.07 (Mdn = 

263, SD = 133.38). The highest enrollment courses are all either traditional online courses 

or synchronous massive online courses (SMOCs), of which there are relatively few: The 

vast majority of all courses are traditional face-to-face format (95.63%), with the remainder 

being online courses or SMOCs. Additionally, 77.77% of courses were lower division, 

56.74% were core courses at UT Austin, and 40.37% carried a course flag (including 

16.74% with a quantitative reasoning flag and 1.49% with a writing flag). 
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Table 2 Number of courses (and number of unique courses) offered in each college by semester 

Note. Here and elsewhere, BUS = Business, CFA = Fine Arts, CLA = Liberal Arts, CNS = Natural Sciences,  
COM = Communication, EDU = Education, EGN = Engineering, GEO = Geosciences, UGS = Undergraduate Studies. 
 

2011 2016
College Fall Spring Fall Spring Fall Spring Fall Spring Fall Spring Total Unique

BUS 13 (5) 13 (6) 13 (5) 9 (4) 17 (5) 10 (5) 18 (5) 13 (5) 15 (6) 10 (4) 131 7
CFA 4 (4) 4 (3) 5 (4) 6 (4) 5 (4) 4 (3) 3 (3) 3 (3) 6 (4) 6 (4) 46 4
CLA 42 (19) 44 (21) 46 (19) 39 (20) 40 (20) 38 (20) 34 (22) 40 (23) 42 (22) 33 (20) 398 37
CNS 27 (15) 21 (14) 28 (13) 23 (13) 33 (18) 33 (19) 27 (16) 31 (16) 33 (17) 26 (14) 282 42
COM 10 (9) 10 (9) 14 (13) 7 (6) 12 (12) 8 (7) 9 (9) 7 (6) 13 (12) 7 (6) 97 23
EDU 7 (2) 6 (2) 6 (1) 0 1 0 1 2 (2) 2 (2) 2 (2) 27 5
EGN 4 (4) 1 4 (4) 0 5 (4) 1 3 (3) 0 5 (5) 2 (2) 25 9
GEO 1 4 (3) 3 (2) 4 (3) 3 (2) 3 (3) 2 (2) 1 0 1 22 4
UGS 6 (1) 4 (1) 8 (1) 3 (1) 7 (1) 1 (1) 9 (1) 1 (1) 5 (1) 3 (1) 47 1

 Sem. Total: 114 (60) 107 (60) 127 (62) 91 (51) 123 (67) 98 (59) 106 (63) 98 (57) 121 (69) 90 (54) 1075 132

Courses2012 2013 2014 2015
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COURSEWORK VARIABLES 

The type, quantity, and grade weight of all work completed by students in a course 

together form an extremely useful depiction of the overall course. Below, summary 

statistics are provided for each coursework variable in turn (see Figure 2 for average 

grading rubric overall and for each college) and in the aggregate (see Figure 3 for the 

average number of total graded assignments per course for each college). Additionally, any 

correlations with other variables of interest are discussed (see Appendix B for all 

correlations; see Figures 4 and 5 for correlation heatmaps). As stated above, any association 

mentioned in the text was over 4 standard errors away from zero.  

Where it is especially interesting, comparisons across colleges are noted. Figure 6 

illustrates differences across colleges in their average grading rubric (grade weight per 

component; top graph), number of assignments per grade component (middle graph), and 

percent of grade per assignment (bottom graph). Keep in mind that the number of unique 

instructors, courses, and departments varies somewhat by college, and thus colleges differ 

in the extent to which they are represented by our sample of courses (see Table 3).  
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Figure 2 Average grading rubric (percent of grade assigned to each coursework 
component) overall (topmost bar) and by college (lower bars). See Table 2 
note for college abbreviations. 

 

Figure 3 Mean number of total assignments (i.e., all coursework completed for a 
grade, including exams) by college. Error bars show bootstrapped standard 
errors. See Table 2 note for college abbreviations. 
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Figure 4 Heatmap of all correlation coefficients (see Appendix B for values). Color 
gradient ranges from dark red (perfect negative correlation) to white (no 
correlation) to dark blue (perfect positive correlation). All correlations are 
shown regardless of statistical significance. 
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Figure 5 Heatmap of significant correlation coefficients (ps < .00005) for all course 
variables, with a color gradient from dark red (perfect negative correlation) 
to dark blue (perfect positive correlation). All colored cells represent 
significant correlations at the stated significance level; blank cells indicate 
insignificant correlations. 
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Figure 6 Breakdown of grade weight per component in grading rubric (top), number 
of assignments per component in the grading rubric (middle) and percent of 
overall grade per assignment (bottom). Plots show overall averages with 
bootstrapped standard errors. Note that scales differ for top, middle, and 
bottom plots. See Table 2 note for college abbreviations. 



 36 

Figure 7  Percent of syllabi with zero for a given rubric component, overall (left) and 
by college (right). Error bars show bootstrapped standard errors. 

 

 

Figure 8 Percent of syllabi featuring each of the spacing/retrieval variables overall 
(left) and by college (right). Error bars show bootstrapped standard errors. 
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Table 3 Number of unique departments, instructors, courses, and combinations by 
college 

 

Exams 

Overall, the average number of exams (including final exams) per course was 3.40 

(Mdn = 3, SD = 1.54), and exams accounted for 69.57% of the total course grade on average 

(Mdn = 75, SD = 25.60; see Figures 2 and 6). The average percent of students' overall grade 

per exam was 20.53% (SD = 8.16). Only 5.77% of courses did not have any exams (see 

Figure 7). Furthermore, 39.35% of courses stated that they had cumulative final exams; 

however, only 4.37% of courses reported that their other course exams were cumulative in 

nature (Figure 8). 

College comparisons 

 Several differences in exam grade-weight are readily apparent when comparing 

among colleges: EDU, GEO, and CNS gave the greatest weight to exams on average 

(89.35, 82.30, and 80.44%, respectively), while UGS, CFA, and ENG gave the least weight 

College Departments Instructors Courses  Course-instructor combinations

BUS 6 16 7 16
CFA 3 23 4 23
CLA 12 115 37 145
CNS 8 67 42 98
COM 6 34 23 38
EDU 3 7 5 7
EGN 5 17 9 17
GEO 1 8 4 8
UGS 1 16 1 16

 Total: 45 303 132 368
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to exams (39.04, 52.40, and 52.76%; see Figure 6). Colleges who allocated a moderate 

percentage of the grade to exams were COM, BUS, and CLA (61.60, 65.15, and 69.85%). 

In terms of cross-college differences in number of exams, the differences were less 

pronounced: CNS (M = 4.33, Mdn = 5) and GEO (M = 3.91, Mdn = 3) gave the greatest 

number, while UGS (2.26, Mdn = 2) and ENG (M = 2.16, Mdn = 3) gave the fewest. 

Because of this, the average percent of course grade per exam mirrors closely the overall 

average percent of grade from all exams (Figure 6). 

The colleges most likely to have cumulative final exams were GEO (72.73%) and 

CNS (71.99%), followed by UGS (44.68%), BUS (38.93%) and ENG (36.00%; see Figure 

8). Colleges least likely to have cumulative finals were EDU (3.70%), CFA (8.70%), and 

COM (15.46%). Also, GEO had the largest proportion of courses with cumulative non-

final exams (18.18%), CNS was second (8.87%), and all other colleges were under 5%. 

Indeed BUS, EDU, ENG, and UGS had no courses with any cumulative, non-final exams. 

Correlations  

Across all courses, number and grade percent of exams were both negatively 

associated with having projects/presentations (r = –.29, for number; r = –.39, for grade 

percent), group activities (r = –.35; r = –.31), attendance requirements (r = –.29; r = –.33), 

and out-of-class watching (r = –.32; r = –.36) and reading (r = –.30; r = –.31) activities. 

Furthermore, exam percent-of-grade was negatively associated with learning objectives for 

knowledge and socio-emotional outcomes (r = –.21; r = –.23) as well as doing activities (r 

= –.50). Online and SMOC courses tended to have a smaller percent of grade from exams 

(r = –.39). It is unsurprising that grade choice is strongly positively associated with the 

number and percent of grade from exams (r = .76, r = .54) and negatively associated with 

all other grade components (participation, r = –.36; quiz percentage, r = –.58; homework, 
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r = –.77; in-class assignments, r = –.16): grade choice almost always applies to either 

dropping, retaking, or applying an alternative weighting scheme to exams.  

Interestingly, the number of exams was negatively associated with the percent of 

grade from quizzes (r = –.46), homework (r = –.45), and participation (r = –.27): the fewer 

exams given in a course, the higher the percent of grade from quizzes and from homework 

assignments. It is also noteworthy that the number of exams in a course was not 

significantly associated with the number of homework assignments or the number of 

quizzes. Unlike grade percentage, which must sum to 100% and thus induce negative 

correlations among the grade components (i.e., more of one variable always implies less of 

the others), the total number of homework assignments, quizzes, and exams do not seem 

to trade off in the same way. 

Quizzes 

The average number of quizzes per course was 4.65 (Mdn = 0, SD = 8.56) and, on 

average, quizzes accounted for 7.15% of the total course grade (Mdn = 0, SD = 14.27; see 

Figures 2 and 6). The average percent of overall grade per quiz was 1.00% (SD = 2.16). 

Across all courses, 63.26% did not have any quizzes (see Figure 7). Among courses having 

at least one quiz, the average number of quizzes was 12.66 (Mdn = 10, SD = 9.90) and the 

average grade percentage from quizzes was 19.04% (Mdn = 15, SD = 18.14). 

College comparisons 

Among colleges, the highest grade-weights for quizzes were observed in ENG, 

CFA, and COM (16.35, 12.01, and 11.11%, respectively), while the lowest weights for 

quizzes were given by EDU, GEO, and CNS (1.66, 3.64, and 3.94%; Figure 6). Notice that 

grade weights for quizzes and exams seem to be strongly anticorrelated with the exception 
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of UGS (which has relatively little of the grade coming from either quizzes or exams). On 

average, the greatest number of quizzes were given by ENG, CNS, and GEO (M = 7.64, 

7.07, and 6.27), although the median number of quizzes was 0 for all colleges excepting 

ENG and CFA (Mdn = 12 and 3). Percent of total course grade per quiz was around 1% 

regardless of college. 

Correlations 

Reinforcing a point noted above, number of quizzes was positively associated with 

the number of homework assignments in a course (r = .15), and the higher the percent of 

grade from quizzes, the more likely the course syllabus was to have learning objectives for 

knowledge outcomes (r = .16; Figure 5). Unlike what was observed for exams, larger 

courses and Online/SMOC courses tended to give more quizzes (r = .20) and to make 

quizzes a larger proportion of the course grade (r = .32). Additionally, courses with 

community learning opportunities tended to have a greater number of quizzes (r = .18). 

Homework 

The average number of homework assignments per course was 6.49 (Mdn = 3, SD 

= 8.89), and homework accounted for 16.29% of the total course grade on average (Mdn = 

10%, SD = 17.63; see Figures 2 and 6). The average homework assignment was worth 

6.23% (SD = 7.03) of the course grade. Out of all courses, 28.63% did not have any 

homework (Figure 7). Among courses having at least one homework assignment, the 

average number of homework assignments was 9.28 (Mdn = 6, SD = 9.33) and the average 

grade percentage from homework was 22.92% (Mdn = 20, SD = 17.04). 
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College comparisons 

The colleges with the highest average grade weight for homework were UGS (M = 

43.53%, Mdn = 45, SD = 24.38), ENG (M = 24.11%, Mdn = 25, SD = 21.98), and CFA (M 

= 23.87, Mdn = 20, SD = 14.97), respectively (see Figure 6). Colleges allocating very little 

grade weight to homework on average were GEO (M = 0.45%, Mdn = 0, SD = 2.13), EDU 

(M = 5.32%, Mdn = 2, SD = 9.99), and CNS (M = 11.79%, Mdn = 6, SD = 12.54).  

Colleges giving the largest number of homework assignments on average were 

BUS (M = 11.83, Mdn = 10, SD = 10.50), CNS (M = 10.12, Mdn = 9, SD = 10.70), ENG 

(M = 9.32, Mdn = 11, SD = 6.19). Those with the smallest number of homework 

assignments were GEO (M = 0.45%, Mdn = 0, SD = 2.13), EDU (M = 2.48, Mdn = 0, SD 

= 3.20), and CFA (2.93, Mdn = 2, SD = 3.57). For CFA, COM and UGS each homework 

assignment was worth the most at around 10-12% of the course grade, while for GEO, 

ENG, CNS, and BUS each homework assignment was only worth around 1-3% of the 

course grade. 

Correlations  

The number of homework assignments offered in a course was positively associated 

with having community learning opportunities (r = .20); it was negatively associated with 

reading activities (r = –.20) and exam percentage (r = –.26; a larger amount of homework 

was associated with a smaller percentage of the grade coming from exams; Figure 5). 

Percent of the grade from homework was associated with watching activities (r = .18) and 

negatively associated with informal retrieval practice (r = –.22). However, it was positively 

associated with many good things, including projects/presentations (r = .47), group 

activities (r = .25), and attendance requirements (r = .18). Recall that homework was coded 
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to include any part of the grade that comes from work done at home, including projects and 

papers, thus contributing to the strong association. 

In-class assignments 

The average number of in-class assignments per course was 2.40 (Mdn = 0, SD = 

7.73) and they accounted for 2.40% of the total course grade on average (Mdn = 0, SD = 

6.32; see Figures 2 and 6). Each in-class assignment was worth 0.39% of the course grade 

on average (SD = 1.76). Out of all courses, 80.74% did not have any in-class assignments 

(Figure 7). Among courses having at least one in-class assignment, the average number of 

in-class assignments was 13.87 (Mdn = 10, SD = 13.65), worth an average grade percentage 

of 12.97% (Mdn = 10, SD = 9.43). 

College comparisons 

The colleges allocating the largest percentage of the grade to in-class activities were 

GEO (7.85%, Mdn = 6, SD = 2.70), COM (4.50%, Mdn = 0, SD = 8.19), and EDU (3.14%, 

Mdn = 0, SD = 9.11); all other colleges were less than 3% on average, with medians of 0% 

(Figure 6). The only college with a substantial number of in-class activities was GEO (M 

= 12.05, Mdn = 12, SD = 1.00); CNS, CLA, and UGS were around 2.5 in-class assignments 

on average: all others had 1 or fewer. For none of the colleges was percent of grade per in-

class assignment greater than 1%. 

Correlations 

Unsurprisingly, the number and grade-weight of in-class assignments were 

positively associated with in-class active learning (r = .19 for both) and with attendance 

requirements (r = .15, r = .23), and courses described as “flipped classrooms” had a larger 

number of in-class assignments (r = .20; see Figure 5). The grade weight of in-class 
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assignments was also associated with group activities (r = .21) and knowledge learning 

objectives (r = .16). 

Participation 

On average, participation accounted for 4.52% of the total course grade (Mdn = 0, 

SD = 6.99; see Figures 2 and 6). The percentage of courses awarding no participation points 

was 58.76%. Among courses awarding participation points, the average grade percentage 

from participation rises to 10.96% (Mdn = 10, SD = 6.97). 

College comparisons 

Colleges awarding the most points for participation were ARC (11.67%, Mdn = 10, 

SD = 2.5), CFA (10.29%, Mdn = 10, SD = 9.61), and UGS (7.85%, Mdn = 5, SD = 7.35). 

Those awarding the fewest points for participation were EDU (0.37%, Mdn = 0, SD = 1.92) 

and CNS (2.50, Mdn = 0, SD = 4.88). 

Correlations 

Courses with a larger grade weight for participation were more likely to have 

projects/presentations (r = .22), to have group activities (r = .28), to be lower-division 

courses (r = .28), and to have fewer exams (r = –.27). All correlations are presented in 

Figure 5. Strangely, courses not listing office hours in their syllabi awarded more points 

for participation on average (r = .35).  

Extra credit and grade choice 

Thus far, for each course, we have only considered the individual components of 

the grading rubric—the weight given to various graded coursework in the final grade 

breakdown—but in many courses there is the possibility of earning additional points from 



 44 

outside of the rubric that get added on top of the final grade, or of effectively changing the 

rubric by reweighting various components to result in a higher final grade. These two 

features are discussed below. 

Extra credit 

Opportunities to earn extra credit points were offered in 32.19% of courses. The 

proportion of courses with extra credit was highest in EDU (81.48%) and BUS (57.25%), 

while no courses in ENG gave extra credit and only 13.07% of CLA courses did. Extra 

credit tended to be offered more in upper-division courses (r = .50), flipped-classroom 

courses (r = .22), courses using social media (r = .28), and courses that have knowledge 

learning objectives in the syllabus (r = .21). It tended to be offered less in core courses (r 

= –.23; see Figure 5). 

Grade choice 

Of all courses, 37.58% had grade choice, and as expected due to their exam-heavy 

grading rubrics, the science-focused colleges GEO and CNS lead the way with 72.73% and 

71.28% respectively. BUS (34.35%), COM (31.96%) and ENG (28.00%) were middling. 

Contrastingly, and despite having the largest percent of grade from exams of any college, 

only 3.70% of EDU courses gave students grade choice, while CFA had no courses with 

grade choice at all. Grade choice was positively associated with both cumulative exams (r 

= .34) and cumulative finals (r = .56), but negatively associated with online/SMOC courses 

(r = –.25) and reading activities (r = –.49). In general, its associations mirrored those of 

other exam-related variables (see Figure 5). 
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PEDAGOGICAL APPROACHES 

This section presents findings related to teaching practices that are not captured by 

the grading rubric or the number of assignments. The following sections present groups of 

variables together based on their a priori interrelatedness (i.e., before clustering was done).  

Community and collaboration  

Variables under this heading (group work, community learning opportunities, 

projects/presentations, and social media; see Figure 9) were chosen to reflect social 

connections both between students in a course and also between students and their 

community more broadly. The correlation heatmap (Figure 5) reveals that 

projects/presentations and group activities form a cluster that also includes participation 

percentage and attendance enforcement, while social media and community learning 

opportunities cluster together along with year (note small blue triangles on main diagonal).  

 

 

Figure 9 Percent of syllabi featuring each of the community and collaboration 
variables overall (left) and by college (right). Error bars show bootstrapped 
standard errors.  
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Group work  

The proportion of courses having some form of group work (activities, discussions, 

etc.) was just 16.32%. The colleges UGS, EDU, and CFA were most likely to incorporate 

group work, with 34.04%, 33.33%, and 32.61% respectively. Colleges least likely to 

incorporate group work were GEO (9.09%), CNS (9.57%), COM (11.34%), and BUS 

(12.21%). See Figure 9 for a graphical display of these results. 

As noted above, having group activities or discussions was positively associated 

with grade weight for in-class assignments (r = .21), homework (r = .25), and participation 

(r = .28), but negatively associated with number (r = –.35) and grade percentage (r = –.31) 

of exams (see Figure 5). Group work was also associated with having projects or 

presentations (r = .57), in-class active learning (r = .50), attendance requirements (r = .42), 

and stated learning objectives for knowledge (r = .25) and socio-emotional outcomes (r = 

.21). 

Community learning opportunities 

Overall, the proportion of courses having community learning opportunities was 

44.00% (see Figure 9). Colleges with the greatest percentage of courses with community 

learning opportunities were GEO (81.82%), CNS (63.83%) and COM (59.79%). Colleges 

with the lowest percentage were UGS (2.13%), CFA (21.74%), and EDU (25.93%). In 

addition to positive associations with number of quizzes (r = .18) and homework 

assignments (r = .20), the presence of community learning opportunities was positively 

associated with social media (r = .55), in-class active learning (r = .35), informal retrieval 

practice (r = .40), and doing resources (r = .28); it was negatively associated with reading 

resources (r = –.33) as well as with projects and presentations (r = –.27; Figure 5). 
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Projects and presentations 

Only 15.34% of all courses had students work on projects or give presentations 

(Figure 9). By a large margin, the college with the greatest proportion of courses with 

projects or presentations was UGS with 78.72%. The next greatest was in COM (26.80%), 

followed by CFA (21.74%) and CLA (13.07%). GEO had no courses with projects or 

presentations, and less than 10% of courses in CNS, ENG, EDU and BUS featured them 

(see Figure 9). In addition to the strong positive association with homework grade 

percentage and the negative association with exam variables noted above, projects and 

presentations were positively associated with doing resources (r = .36), participation 

percent-of-grade (r = .22), and attendance requirements (r = .25). The relatively strong, 

negative association between projects/presentations and community learning opportunities 

(r = –.27) is singular for variables in this otherwise positively associated grouping. 

Social media 

Overall, only 7.16% of courses reported incorporating social media: at the college 

level, 16.03% of BUS courses and 12.77% of CNS courses, and 6.38% of UGS courses 

used social media (Figure 7). Around 3% of courses in CLA and COM used social media, 

while none of the remaining colleges (CFA, EDU, ENG, and GEO) did. Use of social 

media in courses was associated only with community learning opportunities (r = .55), total 

enrollment (r = .20), and how recently the course was offered (r = .26). 

In-class active learning and informal retrieval practice 

Variables presented under this heading (in-class active learning, attendance 

requirement enforced, informal retrieval practice, and flipped classroom; see Figure 10) 

were chosen because they all relate to keeping students active during class-time. The 

correlation heatmap (Figure 5) shows a distinct cluster of positive associations between all 
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variables except attendance enforcement which, as noted above, clustered with group work 

and projects/presentations. 

 

  

Figure 10 Percent of syllabi featuring each of the active-learning and retrieval-practice 
related variables overall (left) and by college (right). Error bars show 
bootstrapped standard errors. 

In-class active learning 

The proportion of courses having in-class active learning was 28.09% overall. 

Colleges with the greatest proportion of active-learning courses were UGS (42.55%) and 

CNS (41.49%); see Figure 10. Perhaps surprisingly, ENG had the lowest proportion of 

active-learning courses with just 4.00%; CFA and BUS were also low, with 13.04% and 

15.26% respectively. In addition to positive associations with participation percent-of-

grade (r = .20) and in-class assignment variables (r = .19), in-class active learning was 

positively associated with every other variable in this grouping (attendance enforcement, 

.24; informal retrieval practice, .73; flipped classroom, .48) as well as with group activities 
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(r = .50). It was negatively associated with total enrollment (r = –.22) and reading resources 

(r = –.34). 

Attendance requirement enforced 

Out of all courses in the dataset, 42.05% had some mechanism for enforcing 

attendance (see Figure 10); among GEO and UGS courses, the percentage was highest 

(100% and 72.34%, respectively). Attendance enforcement was lowest in CNS (23.76%), 

EDU (29.63%), and ENG (32.00%). Enforcing attendance was positively associated with 

participation (r = .61), homework (r = .18), and in-class assignment (r = .23) grade 

percentages; it was also associated with knowledge learning objectives (r = .24) and 

reading resources (r = .34). Attendance enforcement was negatively associated with all 

exam-related variables including grade choice. 

Informal retrieval practice 

The overall percentage of courses that incorporate informal retrieval practice was 

25.30% (Figure 10). Here again, the exam-heavy science colleges GEO and CNS had the 

greatest proportions: 63.64% and 45.90%, respectively. COM was also relatively high with 

28.87% while CLA, BUS, UGS, and EDU hovered around 15%. Colleges with the lowest 

proportion of informal retrieval practice were CFA (4.35%) and ENG (8.00%). Informal 

retrieval practice was associated with number and grade-weight of exams (r = .24, .19), as 

well as with cumulative exams and finals (r = .33, .35); it was negatively associated with 

homework grade weight (r = –.22) and reading resources (r = –.37). 

Flipped classroom 

Only 3.26% of courses mention being flipped classrooms, and most of these were 

in CNS, where 9.93% of courses were described that way (Figure 10). In COM 3.09% of 



 50 

courses were flipped, and in CLA only 1.01% were. No other colleges had any courses 

with a flipped-classroom format. Flipped classrooms were more likely to give more in-

class assignments (r = .20), extra credit (r = .38), grade choice (r = .34), and cumulative 

exams and finals (r = .40, .22); they were less likely to require reading resources (r = –.48). 

 

 

Figure 11 Percent of syllabi featuring each of the course resources variables overall 
(left) and by college (right). Error bars show bootstrapped standard errors. 

Types of resources or activities 

The proportion of courses having required reading resources was 93.67%, including 

99-100% of all courses in CFA, BUS, CLA, ENG, UGS, and COM (see Figure 11). For 

CNS, 78.73% of courses had reading resources, while 85.19% of EDU courses did. The 

proportion of courses with watching resources was 12.45%. The college with the highest 

percentage of courses with watching resources was CFA (60.87%), followed by COM 

(38.14%), UGS (23.40%), CLA (9.55%) and CNS (7.45%). ENG, GEO, and BUS, had no 

courses with watching resources. Overall, 82.56% of courses had doing resources. Colleges 

with a large proportion of courses with doing resources were CFA (100%), COM (95.88%), 
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BUS (91.60%), UGS (91.49%) and CNS (91.13%). Colleges with few courses listing doing 

resources were GEO (13.63%) and EDU (59.26%). 

All course resources were negatively associated with exam variables. Requiring 

reading resources was negatively associated with being a core course (r = –.34) and being 

a flag course (r = –.44), as well as several other good things, including community learning 

opportunities (r = –.33), in-class active learning (r = –.34), informal retrieval practice (r = 

–.37), and being a flipped classroom (r = –.48). Watching resources were associated with 

homework and quiz grade weights (r = .18, r = .34) as well as with knowledge learning 

objectives (r = .27). Doing activities/resources were strongly associated with homework 

variables (number, r = .74; grade weight, r = .64) as well as with projects and presentations 

(r = .36). 

INSTRUCTOR EXPECTATIONS 

In this section, descriptive results are presented for the presence of learning 

objectives in syllabi and the degree to which a syllabus is organized and complete. Later, 

results of syllabus text mining are presented which, together with learning objectives, help 

inform our understanding of instructor communication to students via the syllabus. 

Stated learning objectives 

Learning objectives for knowledge, skills, and socio-emotional outcomes were all 

positively associated with each other (knowledge with skills, r = .68; knowledge with 

socio-emotional, r = .52; skills with socio-emotional, r = .71), indicating that instructors 

who include one type of learning objective are likely to include others as well. 
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Figure 12 Percent of syllabi featuring each of the learning objectives variables overall 
(left) and by college (right). Error bars show bootstrapped standard errors. 

Learning objectives for knowledge outcomes 

The percentage of courses that listed knowledge learning objectives in their 

syllabus was 21.11% overall (Figure 12). By college, 80.00% of ENG courses, 43.48% of 

CFA courses, 40.74% of EDU courses, and 39.2% of COM courses had learning objectives 

for knowledge. In contrast, only 13-14% of courses in each of GEO, CLA, and CNS had 

them. As noted above, knowledge learning objectives were positively associated with 

attendance enforcement, group activities, extra credit opportunities, watching activities, 

and grade weight for in-class assignments and quizzes. 

Learning objectives for skills outcomes 

For skills learning objectives, 18.41% of courses had provided them in the syllabus 

(Figure 12). The pattern by college is somewhat different than it was for knowledge 

learning objectives: ENG and CFA were still among the most likely to list them (76.00% 
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and 41.30%, respectively), but CNS jumped into third position with 25.5% having learning 

objectives for skills; in contrast, only 3.05% of BUS courses and 7.41% of EDU courses 

did.  Learning objectives for skills were associated with cumulative final exams (r = .26) 

but with no other variables. 

Learning objectives for socio-emotional outcomes 

A much lower proportion of courses had socio-emotional learning objectives 

overall (5.49%; Figure 12). Indeed, in only two colleges was the percentage of courses with 

these learning objectives greater than 5%: in CFA 39.13% of courses had them and in UGS 

17.02% of courses had them (CNS was third overall with 4.61%). No socio-emotional 

learning objectives were listed in any EDU, ENG, or GEO course. Core courses were also 

more likely to include socio-emotional outcomes (r = .31). 

 

 

Figure 13 Percent of syllabi featuring each of the syllabus organization variables 
overall (left) and by college (right). Error bars show bootstrapped standard 
errors. 
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Syllabus organization and completeness 

Across all syllabi, 85.49% of courses have a list of course topics while 74.32% 

provide dates for course topics (see Figure 13). Colleges with noticeably low rates of 

providing dates for course topics are GEO (36.36%) and CNS (47.52%). The vast majority 

of courses had dates listed for exams (91.72%). Only UGS was low in this regard (76.60%). 

However, only 63.63% of courses had a calendar of due dates for all course work. CFA 

(91.30%), GEO (86.36%), and CLA (77.64%) were good in this respect, while CNS 

(32.62%) and EDU (44.44%) faired more poorly. Additionally, 78.32% of instructors 

mentioned office hours in their syllabus. The colleges with the lowest proportion of courses 

listing office hours was EDU (48.15%), while CFA and GEO had the highest proportion 

(95.65% and 95.45%, respectively). 

Syllabus-completeness variables were all positively associated with each other (all 

rs > .5), though instructor office hours only significantly related to dates for all assignments 

(r = .27). Listing exam dates was related to exam variables, but nothing else. However, 

listing dates for all assignments was negatively associated with several of the active 

learning and community/collaboration variables discussed above, including community 

learning opportunities (r = –.25), in-class active learning (r = –.25), informal retrieval 

practice (r = –.29), and cumulative finals (r = –.26); on the other hand, providing 

assignment due dates was positive associated with attendance enforcement (r = .25), office 

hours (r = .27), and reading resources (r = .33). The same pattern of correlations was 

exhibited by courses listing dates for course topics, which was also positively associated 

with group activities (r = .25) and knowledge learning objectives (r = .24) while being 

negatively related to number of exams (r = –.20).  
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CHANGES IN COURSE VARIABLES OVER TIME 

How recently a course was offered is associated with several course variables, 

indicating change over time across the six years for which we have data (see Figure 14 for 

linear trends and regression coefficient estimates). Specifically, the proportion of 

online/SMOC courses, flag courses, courses using social media, and courses offering 

community learning opportunities have increased significantly over time since 2011. The 

average number of homework assignments and quizzes has also increased over time (by 

roughly half an assignment per year for both), while the percent of course grade from exams 

appears to be in decline (all ps <.001).  

Other trends of note include an increase in in-class active learning and informal 

retrieval practice (increasing linearly by 2-3% per year on average), but a decline in 

projects/presentations over time. Total enrollment per course appears to be increasing (by 

around 5 students per year on average), as does the use of learning objectives for skills and 

socio-emotional outcomes. All other variables appear relatively steady across this time 

period. Finally, one exciting trend that is not explicitly depicted in Figure 14 is a significant 

increase in the total number of assignments (all exams, quizzes, homework, and in-class 

assignments): On average, the average number of assignments students completed for a 

course increased by 1.3 each year, t(1073) = 4.158, p < .001. 

Notice that there are several variables for which a linear trend does not appear 

appropriate (e.g., flipped classroom, online/SMOC courses, stated learning objectives, in-

class assignments). Still, all of the best-practice variables highlighted above do appear to 

be increasing linearly with time (i.e., number of quizzes and homework assignments, in-

class active learning, informal retrieval practice), and others (such as percentage of the 

grade from exams) appear to be decreasing linearly with time.  
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Figure 14 Trends over time for 30 syllabus variables. Note that vertical axis scales 
differ for each panel, and that the coefficient estimate is unstandardized. 
Error bars show bootstrapped standard errors. Unadjusted significance 
indicators for slopes are as follows: *p < .05; **p < .01; ***p < .001. 
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FACTOR ANALYSIS OF COURSE VARIABLES 

In an effort to further identify patterns in the data presented above, an exploratory 

factor analysis  was conducted to summarize the interrelationships among course variables 

(which were of mixed type; polychoric, biserial, and Pearson’s correlations as described 

above alongside caveats about the novelty of the method) with a smaller number of 

interpretable, orthogonal factors; these can be thought of as latent factors that give rise to 

the observed course variables. Principal-axis factor extraction and Varimax rotation were 

performed using the fa() function in the R package psych to determine a robust factor 

solution in the absence of multivariate normality and to aid in description. Horn’s parallel 

analysis suggested 13 factors, and indeed 13 factors had eigenvalues greater than 1. 

However, examination of the scree plot of eigenvalues by rank revealed that 5 factors were 

appropriate. The five-factor solution was favored for parsimony and ease of interpretation.  

The communalities of variables were mostly large, though there were a few 

exceptions: Year, Office Hours, Credit Hours, In-Class Assignment #, and In-Class 

Assignment % were notably low, with communalities less than 0.2, but the other 34 

variables had satisfactory communalities and thus shared common variance with other 

items (see Table 4 for all loadings and communalities.). The five-factor solution explained 

43% of the variance: each of the five factors (PA1 through PA5) accounted for 11%, 10%, 

8%, 8%, and 6% of the variance, respectively. Though principal-axis factoring and an 

orthogonal rotation were used for the reasons mentioned above, maximum likelihood 

extraction and oblique rotation were compared, yielding very similar loadings for the five-

factor solution and producing no notable correlations among the factors (all rs < 0.10 in 

magnitude). Furthermore, our sample size to variable ratio was quite high (about 30:1), 

much higher than that reported in many studies and more likely to produce an accurate 

factor solution (Costello & Osborne, 2005). 



 58 

Table 4 Factor loadings and communalities for factor analysis with principal axis 
factoring after varimax rotation 

  PA1 PA2 PA3 PA4 PA5 Communality 
       
Group Activities 0.65 0.3 0.14 -0.03 0.08 0.54 
Projects/Presentations 0.61 0.1 0.04 -0.09 -0.03 0.39 
Homework % 0.57 -0.21 -0.09 0.36 -0.02 0.51 
Attendance Enforced 0.52 0.06 0.14 -0.09 0.06 0.3 
Participation % 0.47 0.03 0.02 -0.03 0.18 0.26 
Reading Acts 0.33 -0.52 0.21 -0.1 -0.38 0.59 
SLO-Social/Emotional 0.32 0.23 0.32 0.24 0 0.31 
In-Class Active 0.28 0.7 -0.12 0 0.21 0.63 
SLO-Knowledge 0.27 0.17 0.4 0.26 -0.29 0.41 
Doing Acts 0.25 0.22 -0.06 0.65 -0.09 0.55 
Dates for Topics 0.24 -0.18 0.89 -0.12 0.07 0.9 
Watching Acts 0.21 -0.08 0.23 0.3 0.03 0.2 
Quiz % 0.18 -0.28 0.02 0.46 0.02 0.32 
In-Class Assignment % 0.13 0.09 0.08 0 0.07 0.04 
Flag Course 0.11 0.13 -0.05 0.12 0.62 0.43 
SLO-Skills 0.11 0.39 0.27 0.23 -0.03 0.28 
Course Topics 0.07 0.02 0.82 -0.08 -0.02 0.68 
Flipped Classroom 0.07 0.78 0.01 0.17 -0.13 0.67 
Quiz # 0.01 0.06 -0.04 0.4 0.11 0.18 
In-Class Assignment # 0.01 0.2 0.12 0.02 0.01 0.05 
Homework # 0 0.14 -0.05 0.5 -0.03 0.27 
Assignment Dates -0.01 -0.3 0.67 -0.07 -0.05 0.55 
Year -0.03 0.04 0 0.33 0.06 0.12 
Core Course -0.05 0.09 0.04 0.13 0.77 0.63 
Online/SMOC -0.09 -0.66 0.05 0.5 0.01 0.7 
Extra Credit -0.11 0.3 0.01 0.12 -0.39 0.27 
Credit Hours -0.12 0.09 -0.01 0.01 0.1 0.03 
Informal RP -0.14 0.65 -0.16 0.09 0.01 0.48 
Course Level -0.15 0.1 -0.07 -0.03 -0.86 0.78 
Total Enrollment -0.18 -0.24 0.11 0.31 0.16 0.22 
Community Learn Ops -0.2 0.38 -0.06 0.44 0.14 0.4 
Office Hours -0.27 0.01 0.19 -0.04 0.04 0.11 
Social Media -0.28 0.04 0.01 0.45 -0.26 0.35 
Cumulative Final -0.29 0.41 -0.26 0.06 0.02 0.32 
Cumulative Exams -0.39 0.43 -0.02 -0.34 -0.12 0.47 
Exam Dates -0.43 0.11 0.71 0.09 0.05 0.71 
Grade Choice -0.64 0.49 -0.09 0.01 0 0.66 
Exam # -0.66 0.32 -0.01 -0.21 0.03 0.59 
Exam % -0.72 0.3 0.04 -0.57 -0.06 0.95 
Note. PA1 was labeled "Groups, Projects, and Participation"; PA2 was labeled "Active 
Classroom, Cumulative Tests"; PA3 was labeled "Course Planning/Organization"; PA4 was 
labeled "Supportive High Workload"; PA5 was labeled "Required Lower-Division". 
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Simple structure was achieved through Varimax rotation and informative labels 

were created to reflect the pattern of factor loadings (see Figure 15 for a graphical 

representation of the factor loadings). Note again that this factor analysis has not been 

validated and labels are given simply to aid in the interpretation of interrelationships among 

so many variables. Specifically, the first factor extracted (PA1) was given the label 

"Groups, Projects, and Participation" based on large positive loadings for Group Activities 

(.65), Projects/Presentations (.61), Participation % (.47), and Attendance Enforced (.52) 

and large negative loadings for exam variables (around –.70). The second factor, PA2, was 

labeled "Active Classroom, Cumulative Tests" on the basis of large loadings for Flipped 

Classroom (.78), In-Class Active Learning (.70), Informal Retrieval Practice (.65), 

Cumulative Exams (.43), and Cumulative Final (.41); "classroom" was emphasized by a 

large negative loading for Online/SMOC (–.66).  

The third factor extracted, PA3, was labeled "Course Planning/Organization"; it 

had large loadings for Course Topics (.82), Dates for Topics (.89), Exam Dates (.71), 

Assignment Dates (0.67), and Learning Objectives for both Knowledge (.40) and Socio-

emotional outcomes (.32); most other loadings were very close to zero. The fourth factor, 

PA4, was labeled "Supportive, High Workload." It had large loadings for Doing Activities 

(.65), number of homework assignments (Homework #; .50), number and grade weight of 

quizzes (Quiz # and Quiz %; .46 and .40, respectively), Community Learning 

Opportunities (.44), and Social Media (.45). Finally, PA5 was labeled "Required Lower-

Division." This last factor had large loadings for Core Course (.77), Flag Course (.62) and 

a large negative loading for upper division Course Level (–.86). Note that several course 

variables—including instructor office hours, number of credit hours, number of in-class 

assignments, and grade percentage of in-class assignments—did not load appreciably on 

any of the five factors. 
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Figure 15 Visual depiction of Varimax rotated five-factor solution. Factors extracted 
using principal-axis factoring. Loadings 0.3 or greater in magnitude are 
depicted; negative loadings are shown in red. Note that this visualization is 
for descriptive, exploratory purposes only; see Table 4 for loadings and 
communalities. 
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Overall, these factors are readily interpretable and help to more simply explain 

many of the correlations discussed in the previous section. Two factors were structural in 

nature: Required Lower-Division and Course Planning/Organization had large loadings for 

course attributes (e.g., core course, lower-division) and syllabus structure (e.g., list of 

course topics, assignment dates) respectively. The other three factors give an interesting 

picture of how course-level variables tend to co-occur across a range of classes. The 

Groups, Projects, and Participation factor is characterized by participation grades, group 

activities, socio-emotional learning objectives, a large percentage of the grade coming from 

relatively few assignments or projects completed outside of the classroom, and few if any 

exams. On the other hand, the Active Classroom, Cumulative Tests factor represents 

classrooms with a great emphasis on in-class active learning, frequent quizzing, cumulative 

exams, and learning objectives for skills, but a lack of emphasis on readings or work done 

out-of-class. Finally, a third type of classroom emerged in factor labeled Supportive High-

Workload: this factor is characterized by lots of individual assignments (e.g., quizzes and 

homework), the availability of community learning opportunities (such as TA-led study 

sessions), and the incorporation of social media into the classroom. Furthermore, courses 

with high scores on this factor also tended to have higher enrollment and to have been 

offered more recently than other courses, indicating that course model may be becoming 

more prevalent. A final important caveat to this section is that certain unwanted 

dependencies among variables may arise because most course instructors (approximately 

60%) are represented more than once in our data set. Indeed, in the dataset there are 3.45 

courses per instructor on average (Mdn = 2, SD = 4.1). 
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Cluster analysis of course variables 

Due to the fact that course variables were of mixed type (i.e., nominal and 

continuous), factor scores could not be easily estimated. Instead, a cluster analysis was 

performed using the PAM algorithm on a matrix of Gower dissimilarities created for a 

subset of course variables (attendance enforcement, projects/presentations, in-class active 

learning, informal retrieval practice, group activities, cumulative exams, cumulative final, 

and flipped classroom). A 6-cluster solution was chosen based on highest average 

silhouette width (though going higher than 10 clusters results in even higher average 

silhouette widths).  

The results of a t-Distributed Stochastic Neighbor Embedding (t-SNE), a nonlinear 

dimensionality reduction technique (Maaten & Hinton, 2008), are visualized in Figure 16 

depicting both cluster assignment and college. Cluster cohesiveness appears to be best for 

Clusters 1, 3, and 5. Note that the t-SNE algorithm preserves relationships between points 

in a high-dimensional space, but because the absolute point position is arbitrary, axes are 

given a quantitative interpretation (the technique merely serves to visualize non-linear 

cluster separation). The top panel of Figure 17 presents bar plots indicating, for each 

college, the percentage of courses assigned to each cluster. The bottom panel presents, for 

each cluster, the percentage of courses having each of the pedagogical approaches related 

to spacing and retrieval practice (Figure 8), community and collaboration (Figure 9), and 

in-class active learning (Figure 10) discussed above. Note that color coding of clusters 

facilitates comparisons within the top and bottom panels of Figure 17 and is consistent with 

the colors used to denote cluster assignment in Figure 16. 

Cluster 1 is characterized by high attendance enforcement and low frequencies of 

all other variables; CFA had a large percentage of courses grouped into this cluster (37%), 

followed by CLA, COM, and GEO (all ~23%). Cluster 3 is characterized by having low 
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frequencies of all course variables; almost 70% of EDU courses were grouped into Cluster 

3, followed by ENG and COM (~38%). Cluster 6 is characterized by high frequencies of 

attendance enforcement and cumulative final exam, but low frequencies of all other course 

variables. Most GEO courses (55%) were assigned to this cluster, with UGS second (26%) 

and BUS third (21%). 

Cluster 2 is characterized by high frequencies of informal retrieval practice, in-class 

active learning, and cumulative finals; CNS was the only college to be significantly 

represented in this cluster (44% of courses), followed by GEO (18%). Notably, no courses 

from CFA were assigned to this cluster. Cluster 5 is characterized by high frequencies of 

cumulative final exam, but low frequencies for all other variables. CNS and BUS had the 

largest proportion of courses assigned to this cluster (27% and 20%, respectively). Cluster 

4 is characterized by high frequencies of group activities, attendance enforcement, and in-

class active learning. Note that it is the only cluster in which group activities appear 

appreciably. UGS has the highest proportion of courses in this cluster (30%), with EDU 

second (18%) and CFA third (13%). 
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Figure 16 Visualization of cluster separation using t-SNE, colored by cluster 
assignment (top) and by college (bottom). Note that because axes are not 
easily interpretable, they are given arbitrary units and remain unlabeled.  
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Figure 17 Percentage of courses that were assigned to each cluster by college (top). 
Percentage of courses having each pedagogical variable (bottom; variables 
not appearing within a cluster are omitted). 
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SYLLABUS TEXT MINING 

Communication 

Instructor communication to students was assessed in two broad ways. First, all 

syllabi were processed using Linguistic Inquiry and Word Count software (LIWC2015) 

described above. For each college, scores on LIWC variables—either percentile scores, 

word counts, or average percentages of total syllabus words related to each category, 

depending on variable type—are presented in Tables 5 and 6, which also include 

comparison scores for each variable by norming sample. Note that certain variables have 

very small standard deviations within colleges (e.g., Analytical Thinking), while others are 

rather large (e.g., Emotional Tone). Each LIWC variable will be discussed in detail below.  
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Table 5 Mean (SD) of syllabus word-count and LIWC summary variables by college 
 

  Analytic Clout Authentic Tone Words/Sent. 6+ Letters Dictionary 
 M (SD) M (SD) M (SD) M (SD) M (SD) M (SD) M (SD) 

College               
               

BUS 91.09 (3.08) 73.42 (5.49) 21.48 (7.48) 50.50 (9.10) 23.03 (5.59) 27.17 (2.61) 75.70 (4.82) 
CFA 89.74 (5.66) 76.18 (7.80) 19.95 (8.16) 47.11 (10.81) 22.39 (8.96) 23.57 (3.31) 71.08 (10.57) 
CLA 91.98 (4.36) 67.26 (7.91) 20.48 (10.20) 37.91 (12.55) 20.85 (10.07) 25.22 (3.11) 69.68 (7.84) 
CNS 90.01 (3.86) 69.75 (7.12) 23.04 (7.06) 36.91 (10.41) 22.17 (11.91) 23.05 (2.29) 75.36 (6.57) 
COM 91.89 (3.44) 73.93 (7.27) 21.60 (8.80) 44.10 (11.36) 18.60 (3.60) 25.93 (2.84) 72.73 (4.75) 
EDU 88.11 (5.37) 77.78 (7.54) 24.73 (10.84) 54.98 (8.15) 18.19 (3.64) 25.54 (2.58) 77.90 (4.73) 
EGN 95.55 (3.09) 54.50 (7.68) 18.82 (6.06) 41.60 (7.59) 20.47 (6.57) 31.61 (3.78) 68.55 (6.98) 
GEO 89.90 (1.90) 69.45 (5.02) 23.82 (9.27) 39.59 (11.80) 20.95 (3.90) 25.65 (1.65) 69.32 (3.95) 
UGS 90.27 (9.98) 71.06 (9.04) 19.41 (9.17) 42.17 (14.61) 17.30 (4.22) 25.93 (2.76) 70.51 (6.45) 

Grand Mean 91.14 (4.66) 70.00 (8.14) 21.44 (8.87) 41.19 (12.63) 21.00 (9.30) 25.10 (3.23) 72.51 (7.42) 
               

Norms for comparisona              
               

Blogs 49.89 - 47.87 - 60.93 - 54.50 - 18.40 - 14.38 - 85.79 - 
Expressive 

Writing 44.88 - 37.02 - 76.01 - 38.60 - 18.42 - 13.62 - 91.93 - 
Novels 70.33 - 75.37 - 21.56 - 37.06 - 16.13 - 16.30 - 84.52 - 

Natural Speech 18.43 - 56.27 - 61.32 - 79.26 - - - 10.42 - 91.60 - 
NYT 92.57 - 68.17 - 24.84 - 24.84 - 21.94 - 23.58 - 74.62 - 

Twitter 61.94 - 63.02 - 50.39 - 50.39 - 12.10 - 15.31 - 82.60 - 
Grand Mean 56.30 (17.58) 58.00 (17.51) 49.20 (20.92) 54.20 (23.27) 17.40 (16.38) 15.60 (3.76) 85.18 (5.36) 

                              
Note. Analytic = Analytical Thinking (Pennebaker et al., 2014; indexes formality of writing: lower scores mean a more informal, narrative style), 
Clout indexes confidence (Kacewicz et al., 2012); Authentic = Authenticity (indicates more personal /honest language; Newman et al., 2003); 
Normed averages are average percentiles from a large sample of text from blogs, expressive writing, novels, natural speech, newspaper articles, and 
twitter (included for comparison only). 
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Table 6 Mean (SD) of Pronouns, Comparisons, Negations, Affiliation, and Achievement by college 
 

     I (1st sing.)     We (1st pl.)      You (2nd)      Comparisons       Negations       Affiliation      Achievement    
 M (SD) M (SD) M (SD) M (SD) M (SD) M (SD) M (SD) 

College                              
BUS 0.696 (0.52) 0.197 (0.18) 2.833 (0.68) 1.381 (0.46) 0.888 (0.29) 0.863 (0.36) 1.870 (0.70) 
CFA 0.403 (0.26) 0.691 (0.57) 2.549 (1.22) 1.458 (0.37) 0.851 (0.30) 1.655 (0.72) 1.183 (0.41) 
CLA 0.526 (0.53) 0.373 (0.31) 1.914 (1.07) 1.393 (0.56) 0.754 (0.35) 1.059 (0.55) 1.278 (0.47) 
CNS 0.512 (0.42) 0.511 (0.31) 2.815 (1.04) 1.992 (0.42) 1.087 (0.32) 1.132 (0.41) 1.521 (0.47) 
COM 0.433 (0.45) 0.364 (0.24) 2.359 (1.01) 1.539 (0.38) 0.934 (0.35) 1.521 (0.75) 1.457 (0.52) 
EDU 0.428 (0.29) 0.742 (0.58) 2.385 (0.86) 1.316 (0.24) 1.006 (0.34) 1.962 (0.77) 1.384 (0.60) 
EGN 0.536 (0.63) 0.105 (0.15) 0.652 (1.05) 1.310 (0.31) 0.591 (0.40) 0.735 (0.43) 2.208 (0.41) 
GEO 0.325 (0.35) 0.447 (0.28) 2.375 (0.46) 1.448 (0.18) 0.859 (0.20) 0.957 (0.35) 1.024 (0.41) 
UGS 0.420 (0.50) 0.381 (0.36) 1.957 (1.29) 1.268 (0.41) 0.650 (0.37) 1.348 (0.67) 1.513 (0.59) 

Grand Mean: 0.510 (0.48) 0.400 (0.35) 2.330 (1.12) 1.560 (0.53) 0.880 (0.36) 1.150 (0.59) 1.450 (0.56)                
Norms for comparison                             

Blogs 6.26 - 0.91 - 1.32 - 2.17 - 1.81 - 2.2 - 1.27 - 
Expressive Writing 8.66 - 0.81 - 0.68 - 2.42 - 1.69 - 2.45 - 1.37 - 

Novels 2.63 - 0.61 - 1.39 - 2.13 - 1.68 - 1.39 - 0.91 - 
Natural Speech 7.03 - 0.87 - 4.04 - 2.35 - 2.42 - 2.06 - 0.99 - 

NYT 0.63 - 0.38 - 0.34 - 2.39 - 0.62 - 1.69 - 1.82 - 
Twitter 4.75 - 0.74 - 2.41 - 1.89 - 1.74 - 2.53 - 1.45 - 

Grand Mean 4.99 (2.46) 0.72 (0.83) 1.7 (1.35) 2.23 (0.95) 1.66 (0.86) 2.05 (1.28) 1.30 (0.82) 
                              
Note. Normed averages are average percentiles from a large sample of texts including blogs, expressive writing, novels, natural speech, newspaper 
articles, and twitter (included for comparison only). 
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LIWC summary variables 

Figure 18 depicts syllabus scores on LIWC’s four summary variables: analytical 

thinking, clout, authenticity, and tone. First, college syllabi in general can be compared to 

averages based on various kinds of text. Note that in general, compared to overall averages, 

syllabi tend to be high in analytical thinking (more formal, less narrative) and lower in 

authenticity (less personal and open) relative to the norming sample of texts. They also 

tend to be higher in clout (expressing more confidence and leadership) but less warm in 

terms of emotional tone than the norming sample, though here there are exceptions by 

individual college here: ENG courses in our sample tend to be low in clout, while EDU 

courses are high in emotional tone. 
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Figure 18 Mean LIWC summary variable scores by college. Error bars show 
bootstrapped standard errors. Horizontal lines show normed averages for 
each variable 

Shifting focus to differences among colleges on each of these four variables, it can 

be seen that ENG and EDU continue to be opposites on each dimension: EDU is the college 

with the lowest mean score for analytical reasoning, while ENG has the highest by a large 

margin; in contrast, EDU has the highest scores for authenticity on average, while ENG 

has the lowest (though the standard errors are larger here). ENG has the lowest average 

clout score by a significant margin, but EDU has the highest average clout score among 

colleges. Emotional tone was the only variable for which the two colleges did not have 
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scores at opposite ends of the scale: while EDU courses in our sample score highest on 

emotional tone, ENG was fourth lowest (with CNS taking the bottom spot). 

Interestingly, it is not just EDU and ENG courses that show polarity across the four 

summary variables: certain colleges tend to cluster together in such a way that certain 

variables appear correlated with others. For example, colleges scoring high in clout tend to 

score high in emotional tone but low in analytical thinking: the top four colleges for clout 

and tone are the same (EDU, CFA, COM, and BUS). Lowest in both tone and clout were 

the science colleges CNS, GEO, ENG, and also CLA. Additionally, the top two colleges 

and bottom two colleges are completely switched between clout and analytical thinking 

(EDU and CFA lowest in analytical thinking but highest in clout; ENG and CLA highest 

in analytical thinking but lowest in clout). If we compute the correlation across all syllabi, 

we find that clout and tone are slightly correlated (r = .12, adjusted p < .001), while clout 

and analytical thinking are strongly negatively correlated (r = –.39, adjusted p < .001). 

Conversely, colleges scoring high on authenticity tend to score lower on analytical thinking 

(r = –.30, adjusted p < .001), but also score slightly higher on clout (r = .13, p < .001). 

There was no relationship between tone and either authenticity or analytical thinking. 

Finally, when compared to averages for various types of text (blogs, expressive 

writing, natural speech, novels, New York Times articles, and Twitter), syllabi tend to 

closely resemble NYT articles in terms of analytic thinking, authenticity, and clout; novels 

are also close to syllabi on these dimensions. Furthermore, on these three variables, syllabi 

are very dissimilar to natural speech, expressive writing, and blogs (see horizontal lines in 

Figure 18). The sole exception to this pattern is ENG, whose syllabi tend to have similar 

clout scores as natural speech. However, in terms of tone, syllabi tend to be much more 

positive than NYT articles, bearing a resemblance to novels, Twitter, blogs, and expressive 

writing. Syllabi from EDU, BUS, and CFA were more similar in tone to blog posts and 
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Twitter tweets (more positive), while CNS, CLA, and UGS were more similar in tone to 

novels and expressive writing. 

Text-level descriptives 

Figure 19 displays the average proportion of dictionary words, proportion of words 

containing six or more letters, and number of words per sentence for each college. There 

are no extremely compelling patterns to observe here, other than to note that EDU has the 

highest proportion of dictionary words and the lowest number of words per sentence on 

average: these syllabi seem to use language that is more straightforward.  Another 

observation is that ENG has the lowest percentage of dictionary words but the highest 

percentage of words with six or more letters. This suggests that ENG is using a greater 

proportion of specialized terms that do not appear in the dictionary, but that tend to have 

more letters. However, the same might be expected of CNS, which does not follow this 

trend. 
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Figure 19 Mean counts for text-level descriptive variables. Error bars show 
bootstrapped standard errors. Horizontal lines show normed averages for 
each variable 

Compared to averages for various types of text, syllabi resemble NYT articles in 

having a relatively low proportion of dictionary words; this is likely a function of many 

specialized terms and proper nouns in each case. Syllabi also closely resemble NYT articles 

in their proportion of words with over five letters and in their average number of words per 

sentence, although for this last we see some differences among colleges: UGS, ENG, and 

COM have fewer words per sentence on average and more closely resemble expressive 

writing and blog posts.  
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While exploring these coarse-grained text variables, it is sensible to also consider 

average syllabus length by computing total word count. This has been done in two different 

ways (Figure 20). First, LIWC generated a raw word count for each syllabus based on 

spaces between character strings. This estimate is raw in the sense that it does not remove 

numbers (e.g., those appearing in the grading rubric), punctuation, or stopwords. The 

second plot of average syllabus word count was computed manually after such text 

cleaning had taken place. In general, BUS (raw: 3770; clean: 2144), CFA (raw: 3854; 

clean: 1908), and CNS (raw: 3687; clean: 1739) have longer syllabi on average, while ENG 

(raw: 1798; clean: 1039), GEO (raw: 1909; clean: 1018), and UGS (raw: 2114; clean: 1064) 

have shorter syllabi on average, leaving CLA (raw: 2270; clean: 1146), COM (raw: 2420; 

clean: 1274), and EDU (raw: 2401; clean: 1508) in the middle. Comparing the two word-

count plots, it can be seen that removing the numbers, stopwords, punctuation, and foreign 

characters significantly reduced average syllabus word count, sometimes by nearly half: 

this drop was especially pronounced in CNS. 
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Figure 20 Mean syllabus word count by college. Left panel shows raw counts before 
text cleaning; right panel shows counts after cleaning text to remove non-
words. Note that y-axes differ between panels. Error bars show bootstrapped 
standard errors.  

 

Pronouns 

Examination of differential pronoun use in syllabi by college revealed several 

trends, including one that polarizes EDU and ENG yet again: EDU had the highest 

proportion of first-person plural pronouns (e.g., we, our) per syllabus, while ENG had the 

lowest proportion (Table 5; Figure 21). BUS was not far behind with the second least, but 

they topped the charts for use of first-person singular (e.g., I, my) and second-person 

singular (e.g., you, your) pronouns. In general, second-person singular pronouns were used 

far more than the other pronouns, with the sole exception of ENG, which used far fewer of 

them than other colleges. Pronoun use was somewhat correlated: syllabi using more first-
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person singular pronouns and first-person plural pronouns also tended to use more second-

person singular pronouns (r = .33 and r = .37, respectively; adjusted ps < .001). However, 

using a higher proportion of first-person singular pronouns was not correlated with greater 

use of first-person plural pronouns (r = .05; adjusted p = .13). 

Looking at how syllabi compare with other types of text in their use of pronouns, 

interesting differences can be seen (Figure 21). For use of first-person pronouns, syllabi 

are most similar to NYT articles on average, with relative few of both. However, it can be 

seen that while a low rate of first-person plural pronoun use is relatively common across 

different types of texts, the rate of first-person singular pronouns is quite variable; indeed, 

they are used 7-8 times more often in expressive writing, natural speech, and blogs than 

they are in syllabi, which are actually lower than NYT articles on average. A different trend 

emerges for second-person pronouns: for most colleges, frequency of use looks a lot like 

it does for Twitter, blogs, and novels. Here again, ENG is an exception, with low levels of 

use more closely resembling NYT articles and expressive writing. 
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Figure 21 Mean syllabus pronoun counts by college. Error bars show bootstrapped 
standard errors. Horizontal lines show normed averages for each variable 

Comparisons and Negations 

The use of comparison words (e.g., greater, after) and negation words (e.g., no, 

never) was examined to see whether different colleges put more or less emphasis on 

comparison and whether colleges differed in their use of restrictive, negative language 

(e.g., “no late work, no exceptions”). From the right side of Figure 22 we can see that, in 

general, syllabi contained a greater proportion of comparison words than negation words, 

but use of negations and use of comparisons were correlated (r = 0.34, p < .001). Courses 
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in CNS made far greater use of comparisons than did courses in other colleges, with BUS 

and COM tied for a distant second. BUS and CNS made the greatest use of negations as 

well: they were at the top in both categories. Consistent with the moderate correlation, the 

colleges with the fewest comparisons (UGS and ENG) were also the colleges with the 

fewest negations. 

Syllabi made use of negations with a relatively low frequency, similar to NYT 

articles and very different from natural speech. However, in terms of making comparisons, 

syllabi were quite low relative to all comparison text means; the closest comparison text 

sample in terms of comparison frequency was Twitter tweets. As noted above, CNS had 

by far the highest frequency of comparison words, surpassing the average for tweets. 
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Figure 22 Mean syllabus counts for words related to achievement, affiliation, 
comparisons, and negations by college. Error bars show bootstrapped 
standard errors. Horizontal lines show normed averages for each variable. 

Achievement and Affiliation 

Words in the achievement and affiliation categories reflect an attention to, or an 

awareness of, achievement (e.g., success, better) or affiliation (e.g., friend, social), 

respectively, on the part of the speaker or writer (Figure 22, left two panels). Words 

emphasizing achievement were especially common in ENG and BUS; words emphasizing 

affiliation were especially common in EDU and CFA. Thus, for these dimensions as well, 

ENG and EDU can be observed on opposite ends of the spectrum.  Interestingly, the 

colleges with the highest use of achievement words (ENG and BUS) were also the colleges 

 



 80 

with the lowest use of affiliation words. Some colleges, such as UGS and COM, used a 

moderate amount of words related to both achievement and affiliation. Despite their 

differential use across colleges, the proportion of words related to achievement and to 

affiliation within syllabi were not significantly correlated. 

With respect to comparison texts, syllabi diverged in their resemblance based on 

college: ENG and BUS used achievement-related words frequently, at a rate similar to 

NYT articles, while UGS used them very infrequently, similar to novels and natural speech.  

For all other colleges, the use of achievement words was middling, similar to Twitter, 

blogs, and expressive writing. Use of affiliation-related words was lower in syllabi than for 

other types of text media, most closely resembling that of novels and NYT articles on 

average. However, EDU was higher than the rest, showing greater similarity to natural 

speech in use of affiliation terms. 

Sentiment analysis 

While LIWC computes a tone summary that indexes emotional valence, it does so 

using the full text from each syllabus. Thus, no cleaning of text data takes place before the 

computation (e.g., no removal of stopwords or punctuation), which could skew the results. 

Furthermore, there are many extant lexicons for emotional words that may have different 

strengths and weaknesses; furthermore, some of these explore different types of emotional 

terms (e.g., trust, anticipation, fear) rather than just labeling them positive or negative (see 

Analysis section). 

Emotional valance 

Figure 23 shows average scores for each colleges’ syllabi on emotional valence 

(higher scores positive), computed using three lexicons popular for sentiment analysis as 
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described above. The first thing to note is that there is consistency, as well as discrepancy, 

among the various lexicons in their sentiment scores. CNS, BUS, and UGS are consistently 

in the bottom five (more negative), while EDU, ENG, and CFA are consistently in the top 

four (more positive). However, certain colleges jump around depending on which lexicon 

is used: for example, GEO is given the highest score using the bing lexicon, but the third 

lowest score by both the NRC and AFINN lexicons. Though not as extreme, CLA also 

shows some inconsistency across lexicons, though tending mostly toward the middle of the 

scale.  

Comparing these sentiment analysis results to average LIWC tone scores by college 

(cf. Figure 18) raises similar issues to those above: compared to rankings from the three 

lexicons, CNS stays put at the bottom, UGS and COM remain in the middle, and CFA and 

EDU continue to achieve very high scores. However, BUS is rated much more positively 

by LIWC than by the three lexicons, where it was among the lowest in emotional tone, and 

ENG was given a far more negative rating by LIWC than it had gotten using each of the 

three lexicons. 



 82 

 

Figure 23 Mean syllabus emotional valence scores by college for each of three 
common sentiment lexicons  

The differences between LIWC scores and the lexicon-based sentiment scores are 

likely due to the fact that very different methods and data were used to compute them: 

LIWC scores were calculated based on whole-text syllabi using a proprietary scoring 

system, while the lexicon scores were calculated after cleaning the text by removing 

stopwords, proper nouns, numbers, URLs, etc. The differences between lexicons are more 

difficult to account for because the data was the same in each case; however, the lexicons 

were created by different people for different purposes using different methods (see 
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Analysis section). Also, the summary variable for one of the lexicons was the sum of 

positive and negative word scores of different magnitudes, while for the others it was the 

ratio of words labeled positive to words labeled negative. For each pairwise combination 

of emotional valence scores (positive-negative ratio or sum), the correlation across all 1075 

syllabi was 0.56 for bing and NRC, 0.43 for bing and AFINN, but only 0.17 between NRC 

and AFINN (all ps <.0001).  

Fortunately, in spite of all this variability, certain things can be said with 

confidence: relative to courses in other colleges, CNS courses in our sample have a more 

negative emotional tone while EDU and CFA have a more positive emotional tone, 

regardless of the scoring method used. Certain colleges such as UGS and COM have a 

consistently neutral average for emotional tone among the courses in this sample, with 

COM being slightly more positive. Colleges with particularly inconsistent results across 

methods were BUS and ENG, which were near the top using some methods and near the 

bottom using others. Certain words are inherently ambiguous with respect to sentiment in 

the absence of context (e.g., well, kind, like); further work should be done to develop 

methods that account for such differences in context.  

 Sentiment across eight emotions 

A richer picture of the emotional content of a document can be gotten by using 

sentiment labels that give detail beyond positive and negative. To achieve such a picture, a 

lexicon of eight potentially overlapping sentiment categories was used to label words in 

syllabi (anger, anticipation, disgust, fear, joy, sadness, surprise, and trust). Figure 24 

presents the average proportion of syllabus words falling into each category by college; 

Figure 25 presents the category word counts, but as a proportion of all emotion-labeled 

words rather than the total number of words in the syllabus as before. In the former, it can 
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be seen that UGS is the most emotional college by far, ranking first in anger, disgust, 

sadness, and fear, but also in joy and trust; UGS is also second highest in anticipation words 

and third highest in surprise words. CLA also ranks near the top in every category. 

The least emotional colleges appear to be GEO, CNS, BUS, and GEO, scoring at 

the bottom on almost every sentiment category. Note that these are also the colleges that 

tended to score most negatively on emotional valence. There are three exceptions to this 

generally low-emotion set: CNS is relatively high in fear, GEO is relatively high in 

surprise, and ENG is relatively high in trust. COM, EDU, and CFA tended to rank near the 

middle across the board with just a few exceptions. 

When conditioning on overall emotionality (i.e., taking only the emotion words in 

each syllabus and calculating the proportion of these words in each emotion category; 

Figure 25), a slightly different picture emerges. First, note that trust words make up about 

28% of all syllabus emotion words, followed by anticipation words (19%); fear, joy, and 

sadness words are the next most common (11.3%, 11.0%, and 10.6%, respectively), with 

the least common emotions being surprise, anger, and disgust (7.6%, 7.0%, and 4.9%, 

respectively). UGS still gets the top score for anger, disgust, and sadness, but anticipation 

is led by ENG, COM, GEO, and CNS (emotion words in these colleges are likely to be 

anticipation words) while fear is dominated by CNS, CLA, and BUS. On the flip side, 

CNS, ENG, BUS, and GEO used few joy words relative to other emotion words, but ENG, 

GEO, and BUS were especially high in trust-related words (when one of these colleges 

uses an emotion word, there is greater than 30-35% chance it will be a trust word) while 

CFA and UGS were at the bottom, having more emotion words in other categories: these 

two colleges led the way in joy, sadness, and anger. Finally, surprise words make up a large 

proportion of the emotion words used in GEO, COM, and CLA compared to other colleges. 

The ranking of the proportion of each emotion is also interesting to note. While trust and 
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anticipation were the first and second most frequently occurring emotions, fear was 

thirdmost in CNS, sadness was thirdmost in UGS, and joy was thirdmost in CFA, CLA, 

EDU, COM, GEO, and ENG. 

 

 

Figure 24 Mean proportion of all syllabus words falling into each of eight emotional 
categories by college 
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Figure 25 Mean proportion of emotion-labeled syllabus words falling into each of 
eight emotional categories by college 

Syllabus-level tf–idf 

As described in the Analysis section, tf–idf scores were computed for each word in 

each syllabus. For each college, plots of the 10 highest tf–idf words and 10 lowest tf–idf 

words are given in Figures 26 and 27, respectively. Notice that the lowest tf–idf words are 

indeed the most common words across all syllabi (“course,” “time,” “academic,” 

“students,” “disabilities,” “accommodations”). It is more interesting to compare the words 

that are most unique to a given syllabus by college. Aside from the college-specific terms 

 



 87 

(“marketing,” “aerospace,” “algorithms,” “rocks”), we can see others that are suggestive 

of pedagogical differences. For example, among the top ten highest tf–idf terms for each 

college, CFA has “creative,” BUS has “activity,” “scenario,” and “speaker,” CLA has 

“images” and “handbook”, CNS has “programming,” ENG has “clicker” and “analysis,” 

COM has “interview,” GEO has “lab,” and UGS has “capstone.”  
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Figure 26 Words with the lowest syllabus-level term frequency, inverse document frequency (tf–idf) scores by college. 
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Figure 27 Words with the highest syllabus-level term frequency, inverse document frequency (tf–idf) scores by college.  



 90 

College-level tf–idf 

Many of the above terms disappear when tf–idf is computed by college instead of 

by syllabus (i.e., computing term frequency across all terms in a given college, and inverse-

document frequency by number of colleges containing that term in at least once syllabus; 

see Figure 28). However, other interesting terms appear in their place when taking this 

more coarse-grained approach. In CLA, the term “benchmarks” has the highest college-

level tf–idf: it is the most important and discriminating word for CLA syllabi relative to all 

other colleges’ syllabi. The terms “scripts” and “showcase” are the most important terms 

for syllabi in UGS; the term “expressing” is very important for CFA, and “scenario” is still 

important for BUS courses. There are also some apparent issues when colleges have very 

distinctive courses (e.g., exercise physiology courses) that have terms in the syllabus that 

appear only in that college and nowhere else. Because of this, for example, the most 

important term in EDU in terms of college-level tf–idf was “fitness,” because this college 

includes the Kinesiology and Health Education department (this is also apparent from the 

document-level tf–idf above). Caution must therefore be exercised when examining the 

terms with the highest tf–idf, and it is sensible to calculate department-level and course-

level tf–idf for comparison. 

Department-level tf–idf 

Calculating tf–idf at the department level (i.e., pooling words from all syllabi in a 

single department and treating each department as a “document”) and then taking the top 

ten highest tf–idf within each college provides another view of how unique certain terms 

are to a given discipline (Figure 29). This gives a better picture of EDU (terms such as 

“adolescent,” “literacy,” and “educator” have risen to the top), but perhaps a more skewed 
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view of CNS (which appears dominated by terms from departments related to marine 

science and nutrition). Calculating the most important and distinctive terms across 

departments yields a more flattering and traditional view of CLA: here, “judgement,” 

“aesthetics,” “skepticism,” and “virtue” are all among the top ten in the college. Thus, there 

are some departments within CLA that use very distinctive liberal-arts terminology, and 

these words are found to be relatively uncommon in other departments. 

Course-level tf–idf 

 Finally, we can calculate tf–idf by pooling terms from every syllabus on file for a 

given course (effectively collapsing across different instructors and semesters, but keeping 

the tf–idf at the course level) and then take the top ten from each college (Figure 30). In 

BUS, the terms “mock,” “budgeting,” “resume,” and “peer” among the top terms, and in 

UGS we see “capstone” and “annotated bibliography” (the latter appearing as separate 

words). However, CNS and ENG are dominated by computer programming terminology 

that is very specific to a single course and unlikely to appear elsewhere, and terms from 

EDU are again swamped by words related to exercise physiology. For COM, “celebrity” 

and “publicity” are near the top, just as they were for college-level tf–idf. 
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Figure 28 Words with the highest college-level term frequency, inverse document frequency (tf–idf) scores by college.   
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Figure 29 Words with the highest department-level term frequency, inverse document frequency (tf–idf) scores by college. 
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Figure 30 Words with the highest course-level term frequency, inverse document frequency (tf–idf) scores by college.
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Within-course syllabus similarity 

What accounts for the differences discussed in the foregoing analysis? One 

possibility is that syllabi are more homogenous in some courses than they are in others, 

courses are more homogenous in some departments than they are in others, and 

departments are more homogenous in some colleges than they are in others. It is easy to 

explore the relative homogeneity of syllabi at each of these levels by computing cosine-

similarity scores for all pairs of syllabi for a given course and, separately, all pairs of syllabi 

from different courses within the same department or college, and then averaging these 

within- and between-course similarities. Using within-course similarity, it can be asked to 

what extent syllabi remain similar when different instructors teach the same course (i.e., 

how much different sections of a course are individualized) or how much a course changes 

over time (by computing similarity scores for same-course syllabi across several 

semesters). Computing between-course similarities at the department level provides a 

measure of how much variability there is among syllabus content within a given 

department, but it is inherently less precise because of our syllabus sampling methods 

which picked up large courses at the expense of small ones—courses which are 

overrepresented in some departments (e.g., CLA, CNS) and underrepresented in others 

(e.g., UGS, GEO). 

Figure 31 presents the mean cosine similarity across all same-course pairs for each 

department. Thus, each bar depicts the average within-course similarity for a single 

department, collapsing across semester (though specific departments are not identified by 

name, the color of the bar indicates the college the department belongs to). It is apparent 

that departments in CNS, ENG, GEO, and BUS tend to have higher within-course 

similarity, COM, CFA, and EDU tend to have more moderate levels of within-course 
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similarity, and CLA and UGS have lower levels of within-course similarity. UGS is 

particularly low, which makes sense: several courses in these departments are signature 

courses for first-year students to take so they get exposure to new ideas and ways of 

thinking. As such, each course varies considerably from the others, crossing disciplinary 

boundaries and depending on current events and faculty expertise. Likewise, many of the 

lowest within-course similarity CLA courses are in departments like Government, English, 

and History, where topics and readings tend to be more variable than they are in other 

disciplines. However, this overall pattern is not perfectly reflected by all departments: 

notice, for example, that ENG has one department with the second highest within-course 

similarity and one department with relatively low within-course similarity. 

 

 

Figure 31 Mean cosine similarity scores of all same-course pairs by department, 
colored by college to maintain department anonymity 
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Because the last plot collapses across semester, it is not possible to tell whether 

within-course similarity is due to the same instructor offering the same course repeatedly 

over time rather than actual similarity of syllabi for various versions the same course. One 

way around this is to limit consideration to same-course pairs offered in the same semester 

(Figure 32). Doing so reveals the same general pattern as seen in the previous analysis. 

Each semester, UGS and CLA courses tend to have lower within-course similarity, while 

CNS, BUS, and ENG tend to have higher within-course similarity. Interestingly, 

departments in CFA tend to have very similar syllabi within a given semester. Note that 

GEO is no longer represented because they never offered the same course more than once 

per semester. The bottom of Figure 30 shows the overall average within-course, within-

semester similarity for each course, collapsing across semester; note that only courses 

offered multiple times in at least one semester are included. Thus, this plot presents the 

average within-course similarity for each course when compared to other sections of the 

course that were offered in the same semester. The divide between CLA and CNS courses 

is still apparent, but BUS courses appear to vary considerably in terms of their within-

course similarity for a given semester. 
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Figure 32 Mean cosine similarity scores of all same-course pairs offered in a given 
semester by department, colored by college to maintain department 
anonymity 

 



 99 

 Another view of within-course similarity can be achieved by averaging same-

course cosine similarity scores at the college level (Figure 33). The only major change 

between this view and the department-level view is that CNS has dropped considerably; 

this is because a large number of CNS courses are from a single department that had very 

low within-course similarity, while the CNS departments with the highest within-course 

similarity were based on relatively few courses. UGS has the lowest within-course 

similarity, followed in increasing order by CLA, CNS, CFA, COM, BUS, EDU, ENG, and 

GEO. 

 

 

Figure 33 Mean cosine similarity scores of same-course pairs by college 

 

Though the focus thus far has been on within-course similarity, it is also interesting 

to look at between-course similarity: it can be asked, for example, to what extent are 

different courses in the same college similar, and to what extent are different courses in the 

same department similar (Figures 34 and 35, respectively). Comparing different courses in 

the same college, it can be seen that CLA courses have the lowest between-course 
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similarity on average; thus, CLA courses have very great within-course differences and 

very great between-course differences. On the other hand, GEO courses have very great 

within-course similarity and very great between-course similarity for the syllabi in our data 

set. The only big change to be observed is EDU, which has very high within-course 

similarity (courses don’t change much between professor or semester), but very low 

between-course similarity (different courses are very different relative to other colleges). 

This makes sense in this instance because EDU includes the Department of Kinesiology, 

whose courses contain subject matter that is quite different from typical EDU courses. 

When we look at average different-course, same-department pairs by college (Figure 35), 

the picture remains largely the same with a single exception: CFA has relatively dissimilar 

different-course, same-college pairs but highly similar different-course, same-department 

pairs. This is because the departments within CFA are themselves homogenous in terms of 

their courses (e.g., Art History, Theater), yet very different from each other. Thus, 

similarity for different courses in the same department is high for CFA, but because of 

large differences between departments, similarity for different courses at the college level 

is low. 

Overall, it is clear that syllabi from certain courses are more similar to each other 

than others, and that these differences are reflected even when averaging by department or 

by college. This is largely attributable to the fact that certain large introductory courses—

often with very many sections taught simultaneously—tend to have a common syllabus 

structure, including the same assignments and readings. 
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Figure 34 Mean cosine similarity of different-course, same-college pairs by college.  

 

 

Figure 35 Mean cosine similarity of different-course, same-department pairs by 
college 
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Chapter Four:  Discussion Part I 

This line of inquiry has provided much-needed information about what goes on in 

large undergraduate courses, shedding light on the prevalence and variability of 

educational practices within and across disciplines. To date, such data have been extremely 

limited: when Wieman and Gilbert (2014) polled members of the Association of American 

Universities (AAU), the American Public and Land Grant Universities, and Presidents and 

Chancellors of the Association of American Colleges and Universities, not a single 

institution reported collecting data on teaching practices. At a time when the value of higher 

education is being increasingly called into question by academics and public figures (e.g., 

Lacy, 2011; Caplan, 2018), it is important to gather data about what is going on in large 

undergraduate courses to be able to justify their pedagogical soundness or make necessary 

improvements. 

To reiterate, the literature on how to improve desirable student learning outcomes, 

such as long-term retention and transfer, makes clear recommendations for teaching 

practice: in short, we know “what works.” There have been so many empirical articles 

about effects on student achievement that meta-analyses abound: indeed, a full decade ago 

Hattie (2008) was able to synthesize over 800 meta-analyses of influences on student 

achievement—including over 50,000 studies encompassing over 80 million subjects—in 

his work Visible Learning. Less generally, there have been meta-analyses specific to 

undergraduate education yielding consistent recommendations for evidence-based 

practices such as informal retrieval practice, peer discussion and small group activities, 

graded homework assignments, and frequent low-stakes testing rather than infrequent, 

high-stakes testing (e.g., Freeman et al., 2014; Dunlosky et al. 2013).  

Where courses are revealed not to have kept pace with educational best-practices, 

the findings presented herein can help raise awareness among instructors who might 
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otherwise receive little or no feedback about their own teaching and how it squares 

with evidence-based practices and course design. Results have largely been constrained to 

the level of individual colleges; in part, this was done to make the scope of the project more 

manageable, but another consideration for this choice of grain-size—and one no less 

important—is respect for the instructors themselves and their individual freedom as 

educators. We feel that a far more effective approach is to present these results in the 

aggregate, allowing individuals to reflect on them in relation to their own teaching, which 

they are left to improve on their own terms in the ways they see most fitting. 

These findings are derived from a multi-year process of coding and text-mining 

1075 unique course sections—spanning 10 long semesters, 303 instructors, 45 

departments, and 9 colleges—at a large, public R1 university with an average enrollment 

of 287 students (SD = 133.38). Over 95% of these courses were taught using a traditional 

face-to-face format rather than a web-based format, and only 3.3% mention being flipped 

classrooms (within CNS, this rises to almost 10%). Most of these courses were lower 

division (77.8%), and just over half were core courses (56.7%). Keep in mind that all 

findings are limited to syllabi from large courses at a single large public university, thus 

limiting generalizability to higher education at large, though around 74% of American 

undergraduates do attend public colleges (NCES, 2016). 

Amount of course work is low but increasing 

Some of the most important (and reliable) information that can be taken directly 

from a syllabus is contained in the course grading rubric. This is because each syllabus 

must describe in some detail all the work that students will do in the course and how they 

will be evaluated for it. We know, for example, that graded homework assignments support 

student learning outcomes in K-12 settings (especially among older students; for a meta-
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analysis, see Cooper et al., 2006), and in undergraduate courses (e.g., Cheng, Thacker, 

Cardenas, & Crouch, 2004; Richards-Babb, Drelick, & Robertson-Honecker, 2011). Based 

on course grading rubrics alone, we can tell that in our sample, the median number of 

homework assignments per course was 3, and 30.1% of courses gave no homework at all, 

which is a pretty poor showing. In this way, the course rubric has provided many valuable 

observations for the present study about the nature of coursework in large undergraduate 

classes. 

 In the aggregate (averaged across all 1075 courses), students complete 6.5 

homework assignments, 4.7 quizzes, 3.4 exams, and 2.4 in-class assignments, for an 

average of 16.4 total assignments per course (summed before rounding; Mdn = 12, SD = 

15.7). Notice that the median is considerably smaller than the mean, indicating that the 

bulk of the observations are low: indeed, 30% of courses had 6 of fewer assignments, and 

13% of courses had 3 or fewer assignments (and in most cases, these are all exams). 

Because students learn better when they engaged in course work throughout the semester, 

this dearth of activity is concerning. The skew is also evident when looking at the long 

right tail where there are few courses assigning large quantities of work: the course at the 

75th percentile had 19 assignments, and the course at the 99th percentile had 71 

assignments, while the maximum number of assignments in any course was 105, almost 

ten times as many as the median course! 

Thus, while it is clearly possible to have students engaging with many assignments 

in a single course, the majority of instructors give students very little to do for which they 

will be held accountable. This likely reflects two factors: (a) the predominant incentive 

structure in higher education under which research is more highly rewarded than teaching 

(Chen, 2015; Young, 2006), and (b) the extremely limited amount of time faculty members 
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have to devote to their many responsibilities (Jacobs, 2004). This strain is summarized 

nicely by Kuh (2003):  

“The more pages students write, the more pages faculty members have to read and 
give feedback about. And the more often that we do, the more likely it is that 
students will make appointments during office hours to talk with us about that 
feedback. In terms of student engagement, all this is generally positive. But it 
becomes problematic in terms of allocating time across multiple faculty 
priorities.” (p. 28) 

Because students and faculty both have reason to avoid a heavy workload, this convergence 

of interests leads to a tacit and mutually satisfactory agreement between teachers and 

students, to wit: I like to assign less work because I have less to grade, and you like it too 

because you have less to do!  

Furthermore, students tend to reward low workloads with high course evaluations, 

the most commonly used metric of teacher effectiveness in higher education (for review, 

see Stroebe, 2016). For example, ratings of professor quality and course easiness were 

found to have a correlation of .62 for a sample of professors taken from 

RateMyProfessor.com (Felton, Koper, Mitchell & Stinson, 2008). Findings like this are 

legion, but it is worth mentioning one here based on actual grades and student evaluations 

of teaching: when Wellesley College introduced a maximum average grade of B+ to help 

combat grade inflation in certain departments, professors in those departments (and only 

those departments) received significantly worse course evaluations than they had before 

(Butcher, McEwan, & Weerapana, 2014). A similar rule at Princeton was implemented but 

repealed in 2014 amid concerns that students’ post-graduation opportunities would be 

affected because their GPAs were lower than those of students from peer institutions 

(Windemuth, 2014).  

Perhaps if students were studying on their own time and in their own way, this 

relatively light workload would not be so problematic. But they are not. In fact, a large 
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longitudinal survey of undergraduates at 29 four-year colleges and universities from 2005 

to 2009 found that students spend only about 15 hours per week studying or doing class 

work (Arum & Roksa, 2011; Pascarella, Blaich, Martin, & Hanson, 2011). An historical 

comparison can help put this number into perspective: in 1961, 67% of college students 

reported studying more than 20 hours per week (around 3 hours per day); in 1981, this 

number had dropped to 44%, and by 2011 only 20% of students reported studying this 

much (Babcock & Marks, 2011).  

Thus, it is unlikely that students are doing much academic work of their own 

volition, making it all the more important that educators motivate students with frequent 

assignments to keep them engaged with their coursework. Later, it will be argued 

that this and other issues related to the logistics of implementing educational best-practices 

in large college courses could be readily addressed by, for example, increasing the number 

of teaching assistants to better manage all of the grading that necessarily results from high 

workloads and student accountability. 

Few retrieval practice opportunities and little spacing 

Across all courses, the median number of graded retrieval practice opportunities 

(total number of exams and quizzes) was 4. That is, over half of courses had 4 or 

fewer graded opportunities for retrieval practice (this is still the case when considering only 

those courses who gave at least one exam or quiz). Looking at quizzes specifically, the 

median number per course was 0; indeed, 63% of courses had no quizzes at all!  The power 

of retrieval practice (e.g., coming up with an answer during a quiz in class) to improve 

memory for course material has been shown in countless studies (see Roediger & Butler, 

2011), and it is clear from these findings that the technique is woefully underutilized in 

large college courses. 
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Spacing is more difficult to quantify from syllabus variables, but the degree of 

cumulativity in a course is one potential indicator to examine (e.g., making exams 

cumulative holds students accountable for previously learned material so that they will 

have strong incentives to revisit it at multiple points in time). Unfortunately, not including 

the final exam, only 4% of courses reported having cumulative exams in their respective 

syllabi. When including the final exam, this number was quite a bit higher: 39% of courses 

reported giving cumulative finals. This, together with the limited quantity of work students 

are assigned for their courses discussed above, provides evidence that students are not 

being held accountable for previously learned material to the extent that they could be and 

that the spacing effect is not being used widely or effectively these courses. Unfortunately, 

this lack of spacing in the classroom is extremely common and has been for some time 

(Dempster, 1988). This could be due, in part, to either the perceived lack of value in 

returning to previous material over time, or to the difficulty inherent in spacing/interleaving 

and to the temptations of procrastination and cramming. Regardless, educators would do 

well to build such spacing into their courses to serve as external checks on temptations to 

cram: keeping students engaging with material over time (e.g., by assigning frequent 

graded homework assignments) would likely improve student retention of the material 

dramatically (e.g., Rawson & Kintsch, 2005; see below). 

Different colleges have different strengths 

The findings presented here suggest that educational best-practices are being 

implemented heterogeneously across colleges, with some appearing at much higher rates 

in certain colleges than in others. However, no one college or department has a monopoly 

on any of them: by way of illustration, note that while some colleges were much higher in 

this regard, at least 9% of syllabi in each college had collaborative assignments, and there 
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were even a few courses in CFA that incorporated informal retrieval practice. This is an 

encouraging situation, because it shows that applying each best-practice is feasible across 

the disciplinary gamut of large undergraduate courses. There is no reason to believe that 

any of these best-practices are mutually exclusive or rigidly bound to the subject matter of 

a specific discipline; indeed, research suggests that many if not all of the best practices 

considered here are domain general (e.g., Dunlosky et al. 2013; Hattie 2008). 

Let’s take a moment to review this heterogeneity. Compared to other colleges, 

CFA, EDU, and UGS had a high percentage of courses that incorporated group 

activities, while in the hard sciences (GEO and CNS) there were relatively 

few. Overlapping somewhat with group activities, there was a high percentage of courses 

with projects and presentations in UGS, COM, and CFA: however, this number was very 

low in GEO, BUS, EDU, and CNS. For in-class active learning, UGS, CNS, and 

COM incorporated it into their courses most often; strangely it was lowest in ENG, 

followed by CFA and BUS. Among all colleges, courses in CNS were the least likely to 

enforce attendance. 

Conversely, the science colleges fared more favorably with respect to spacing and 

retrieval practice measures. CNS and GEO had a relatively large proportion of courses with 

cumulative finals and informal retrieval practice; these variables were quite low in CFA 

and EDU. However, relative to others, CFA had a high frequency of socio-emotional 

learning objectives, while ENG had a very high frequency of learning objectives for 

knowledge and skills. CFA, BUS, and COM had the lowest proportion of courses that did 

not assign homework, and all GEO courses had graded in-class assignments. In terms of 

total number of graded assignments (including exams, homework, quizzes, and in-class 

activities), CNS and GEO had the most on average, but BUS was the highest non-science 

college, tied with ENG for third. 



 109 

The overall pattern that emerges can perhaps be seen most clearly in the cluster 

membership of each college (Figure 17, top panel). For instance, Cluster 4 (characterized 

by group activities, in-class active learning, and projects/presentations) was almost entirely 

composed of courses from UGS, EDU, CFA. On the other hand, Cluster 2 (which has 

informal retrieval practice, in-class active learning, and cumulative final exams) was 

primarily made up of courses from CNS and GEO (notably, CLA had a similar number of 

courses in Cluster 2 and Cluster 4). Indeed, CLA, BUS, COM, and UGS were more variable 

in their cluster assignments, suggesting a wider array of course practices.  

On the other hand, it is also clear that certain colleges are overrepresented in the 

“do-nothing” clusters (those characterized by few best-practices, e.g., Clusters 1, 3, and 

5). Though all colleges had sizable fractions of courses in these clusters, in CFA about 75% 

of courses were assigned to one, and over 65% of EDU courses were as well. In summary, 

there appear to be two dominant patterns of best-practice use, both making use of in-class 

active learning: one focusing on group activities, projects, and presentations (and more 

typical of UGS, CFA, EDU), and the other making use of informal retrieval practice and 

cumulative exams (more typical of CNS and GEO). However, there are many courses who 

lack these elements entirely, and this group cuts across all colleges. Overall, these findings 

are indicative of a diversity of best-practices, but several pedagogical gaps can be seen 

across colleges and departments. Thus, there is ample room to adopt best-practices where 

they do not yet exist and to discover and utilize those that may be relatively 

uncommon within a given college or department. 

STEM and Business versus Arts divide apparent in syllabus language 

Text-mining of syllabi yielded additional insights into differences among colleges. 

First, course syllabi for the same course (but different instructors) were found to be more 
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similar to each other in science courses and less similar in liberal arts courses, regardless 

of semester. This indicates that liberal arts faculty customize and individualize their syllabi 

to a greater degree than their counterparts in the sciences (who tend to use the same 

textbook, assignments, etc.). Indeed, CLA and UGS had anomalously low similarities 

relative to all other colleges. However, this pattern could also reflect the nature of the 

material taught in these courses: science courses tend to cover the same fundamental 

material, but liberal arts courses (e.g., English) have greater latitude with respect to the 

specific subject matter taught, thus leading to greater inter-syllabus differences at the 

college level. 

Results of the sentiment analysis were somewhat inconsistent, but there was an 

overall stable tendency for BUS and CNS syllabi to be rated as negatively emotionally 

valenced compared with EDU and CFA syllabi, which were consistently among the most 

positive (e.g., Figure 23). This pattern was observed across several analyses using three 

different lexicons as well as LIWC scores for emotional tone, using both cleaned and 

uncleaned text. Beyond the positive-negative continuum, there were differences among 

colleges with respect to other emotions (Figure 24). 

Differences in linguistic content of syllabi were also observed between colleges, 

though syllabi were comparable on the whole. In terms of sheer word count, the three 

colleges with the longest syllabi on average were CNS, CFA, and BUS, while those with 

the shortest were ENG, GEO, and UGS (Figure 20; both before and after cleaning the text 

by removing stopwords, punctuation, numbers, etc.). In addition to sentiment differences, 

there were also differences in other LIWC variables (Tables 4 and 5). Syllabi in EDU were 

lowest in analytical language, but highest in authenticity (honest, personable) and clout 

(confidence). The opposite pattern was observed ENG courses: these syllabi were highest 

in analytical language, lowest in authenticity, and lowest in clout (Figure 18).  
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It is also interesting to compare colleges with respect to the achievement or 

affiliation orientation of their syllabi (Figure 22). On these dimensions too an inverse 

relationship was observed for science and business relative to fine arts, liberal arts, and 

education. For words relating to affiliation (e.g., ally, friend, social) EDU and CFA had the 

most such words while ENG had the least (with BUS not far behind). However, for words 

relating to achievement (e.g., win, success, earn), ENG and BUS syllabi had the greatest 

proportion (with CNS thirdmost), while UGS had the least, followed by CFA, CLA, and 

EDU.  

The proportion of comparison words (e.g., greater, after) and negation words (e.g, 

not, never) used in syllabi was also of interest a priori (Figure 22). It was found that CNS 

syllabi used far more comparison words than any other colleges, but otherwise there was 

little variation across colleges. With respect to negation words, CNS also came out on top, 

but EDU, COM, and BUS were not far behind. The colleges with the smallest proportion 

of negation words in their syllabi were ENG, UGS, CLA, and CFA. 

High-stakes exams are the norm 

Across all courses, the median number of exams (including the final exam) was 3 

and the median grade percentage for exams was 75%. About 94% of courses in our sample 

gave exams (versus, say, large take-home papers or projects). Among the 6% of courses 

giving no exams, the mean percent of the grade from homework assignments was 46%, 

and the mean number of homework assignments in these courses was 10 (Mdn = 5). Note 

that this large percentage is due to the fact that the homework category was defined to 

capture all assignments completed outside of class, including papers or “take-home” 

exams, which are featured more often in courses without formal exams. 
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One conservative definition of high-stakes exams is having four or fewer exams 

accounting for at least 75% of your grade; by this metric, in our sample 40% of courses 

have a grading rubric based on high-stakes exams (see Figure 36 for high-stakes exams—

according to this definition—by college and department). Indeed, in 24% of courses, 3 or 

fewer exams accounted for at least 75% of the grade. Note that this includes courses not 

giving any exams at all. Among courses that gave at least one exam, 43% were high-stakes 

using these criteria. Using a less conservative cut-off of 50% of the total grade from exams, 

65% of courses qualify as grading based on high-stakes exams (69% among courses giving 

at least one exam). Whatever the definition, high-stakes exams are clearly the norm in large 

college courses: recall that the median number of exams (including finals) was 3, and the 

median percent of grade from exams was 75%. 
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Figure 36 Percent of syllabi with high-stakes exams (defined here as 4 or fewer exams 
accounting for 75% or more of the final grade) by department, grouped by 
college (color legend). Departments are unlabeled to maintain anonymity. 
Colored vertical bars spanning horizontal bars of the same color indicate 
college means. Error bars show bootstrapped standard errors. 
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How did high-stakes exams vary across colleges? More than 40% of courses in 

BUS, CLA, COM, EDU, ENG, and GEO had high-stakes exams using the stricter criteria 

of 4 or fewer exams, together worth 75% or more of the final course grade (Figure 36). 

Interestingly, only 31% of CNS courses gave high-stakes exams, only 15% of UGS courses 

did, and 4% of CFA courses did. One counterintuitive observation to be made here is that 

large liberal arts courses use high-stakes testing more often (47.5%) than do large natural 

science courses. Notice, however, that there is significant variability within a college (i.e., 

across departments) 

High-stakes exams are traditional and convenient, but while they have a semblance 

of validity, they are in actual fact relatively poor assessments of what students have learned 

both in terms of their long-term retention of course information and their ability to apply it 

in new situations. Furthermore, they encourage poor study strategies, such as cramming, 

which are ultimately responsible for these impoverished learning outcomes (e.g., Bahrick, 

2000; Custers, 2010; Pennebaker, Gosling, & Ferrell, 2013). Research has firmly 

established that, with respect to encouraging retention, transfer, and good study habits, 

more tests is better than fewer (for review, see Roediger & Butler, 2011; Karpicke & 

Roediger, 2008), and more frequent testing necessarily creates spacing by eliminating the 

possibility of one-shot cram sessions (e.g., Rohrer, 2015; Kang, 2016).  

Cause for optimism in trends over time 

The foregoing discussion relies on statistics obtained by averaging syllabi over 

time. Another approach is to look at averages within a given year and examine the trend. 

In this study, we have examined syllabi ranging from Fall 2011 to Spring 2016, and several 

trends observed during this time period appear positive. There are significant increases in 

such positive course variables as homework assignments, quizzes, quiz grade percentage, 
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in-class active learning, learning objectives, informal retrieval practice, and community 

learning opportunities. There were also significant decreases in more negative course 

features such as percent of grade from exams. However, variables reflecting certain best 

practices were found not to have increased (group work, cumulative exams/final, flipped 

classroom) and in some cases even to have decreased (projects/presentations). Overall, 

however, the story is a positive one: though a few lag behind, best-practices are generally 

on the rise. 

Comparisons with recent classroom observations. 

Recently, the journal Science published an article that used systematic classroom 

observations to assess over 2,000 classes in the STEM fields across 25 different colleges 

and universities (Stains et al., 2018). The protocol they used documented the occurrence of 

13 student behaviors and 12 instructor behaviors observed in 2-min intervals of class time 

(for more about the protocol used, COPUS, see Smith, Jones, Gilbert, & Wieman, 2013). 

In their sample 71.4% of courses were lower-division, making it comparable to our own 

(77.8%), though it was limited only to courses in STEM fields. However, it is important to 

note that class sizes were considerably smaller on average than those in our dataset. For 

example, around 30% of their courses had less than 50 students, and only 44% had more 

than 100 students, while all of our courses had more than 100 students (indeed, 84% had 

more than 200 students). 

These classroom observations revealed that during 75% of the 2-min intervals, 

instructors were lecturing, and during 87% of the intervals, students were listening to the 

instructor, though the variability of these estimates was large. The remaining time was 

taken up by students answering questions (occurring in 21% of intervals) and asking 

questions (10% of intervals). The authors then conducted a latent profile analysis on the 
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observations, revealing seven unique instructional profiles. Of these, 55% were classrooms 

in which lecturing took place at least 80% of the time, with little if any interactivity (a 

didactic style); 27% were classrooms that supplemented lecture with questions and 

activities (interactive lecture style); and 18% were classrooms in which group work and 

inquiry learning featured more prominently (student centered style).  

Interestingly, these three broad profiles map onto the three factors that emerged 

from our CFA rather well. Though there were no variables in the factor analysis that 

captured lecturing per se, the factor Groups, Projects, & Participation (based on syllabus 

data from a variety of courses) looks a lot like the student-centered style as determined 

from classroom observations of STEM courses, and the factor Active Classroom, 

Cumulative Tests looks like the interactive lecture style. Perhaps courses with a didactic 

style would be characterized by having low factor scores on these two factors. The third 

factor we observed that could be characterized as a course profile was Supportive, High-

Workload. Syllabus variables like number of quizzes and number of homework 

assignments had high loadings on this factor. Because there is certain information that can 

only be obtained through observations (e.g., time spent lecturing) and other information 

that can only be gotten at through review of syllabi or other course materials (e.g., number 

and grade percent of assignments), perhaps a useful approach to assessing instructional 

efficacy lies in some synergy of the two approaches. 

Finally, it is interesting to look at how our course clusters map on to those found 

by Stains et al. (2018). Our analysis favored a six-cluster solution (comparable to their 

seven) but differed somewhat in the distribution of courses belonging to each cluster type. 

For example, in CNS (a college including all STEM fields except engineering and 

geology), the cluster assignments analogous to their interactive lecture style made up 

around 50% of courses (cf. 27%), though the proportion of didactic courses was 
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comparable (47% vs. 55% of their courses). On the other hand, the number of student-

centered courses in CNS was much lower than their average (around 3% vs. their 18%). 

These differences are almost certainly attributable to class size; when Stains et al. (2018) 

condition on large class sizes, the percentage of student-centered courses (those featuring 

group work, inquiry learning, or student-instructor interactions) was closer to 10%, and 

this was especially true of courses held in lecture halls with fixed seating. The pattern for 

our ENG and GEO courses, however, revealed an exaggerated version of their overall 

findings: well over 50% of courses were didactic in nature (i.e., lacking group activities, 

student projects, or in-class active learning), with only 10-20% being assigned to 

interactive or student-centered clusters. 

A new way forward for large introductory courses 

There is a widespread belief that when college students matriculate, they should be 

equipped with good study-skills and unflagging motivation—essentially, that from day one 

they are responsible for all of their learning in a course and they must take it into their own 

hands. The instructor furnishes the information, either via a lecture or through the assigned 

readings, and it is incumbent upon the student to assimilate this information for themselves. 

Evidence that learning has taken place is traditionally assessed with one or two midterm 

exams covering a unit’s worth of lectures and readings, and also a final exam. 

However, in the internet age, the role of the instructor is changing dramatically: 

modern educators can no longer afford to be mere lecturers—content delivery systems. 

Now information about even the most obscure academic subjects is readily available 

online through primary and secondary texts, often entirely free of charge. The same is true 

for high-quality video lectures given by world-class faculty (e.g., MIT OpenCourseWare; 

Abelson, 2008; Carson, 2009) and now also for self-paced online courses with well-
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sequenced material and high quality assessments (e.g., Coursera, edX; Breslow et al., 

2013). Indeed, even free online textbooks, written and edited by subject-matter experts and 

leaders in their field, are becoming the norm (e.g., OpenStax; Pitt, 2015).  

The structure of traditional education will need to accommodate these high-tech 

changes, just as the music, newspaper, and retail industries have. Fortunately, this 

instability can be an impetus for reinvention, fostering positive change by forcing relatively 

static systems of education everywhere to revisit long-held assumptions and reshape 

courses and curricula in ways that best serve the interests of students, creating the human 

capital needed for individual success and societal productivity.  

In higher education, the role of the instructor must be redefined. Failure to do could 

leave the entire collegiate enterprise vulnerable to criticism and competition. There is a 

rising current of skepticism about the ultimate value of our hallowed educational 

institutions, and many of the criticisms are hard to parry: under the status quo, students 

seem to remember very little from their formal education. Bahrick and Hall (1991) found 

that half of all introductory mathematics was forgotten within five years for those who 

don’t continue on to higher mathematics, and virtually all of it was forgotten within 25 

years. This finding isn’t just limited to mathematics: after the equivalent of a single 

semester of a Spanish language course, grammar and vocabulary recall is close to zero after 

5-6 years without additional practice (Bahrick, 1984).  

Indeed, basic facility with written English is poor among adults: In a study of 

18,000 randomly selected Americans, the National Assessment of Adult Literacy found 

that just over half of Americans are considered “Intermediate” or “Proficient” in prose and 

document literacy (with less than half receiving these scores for quantitative literacy; 

Kutner, Greenberg, & Baer, 2006). To put this into context, a score of Intermediate on 

prose literacy required respondents to summarize a newspaper job advertisement; for 



 119 

document literacy, the Intermediate task was using a TV guide to find out when a certain 

program ended. Compared to literacy and numeracy, other subjects fared worse still. The 

Intercollegiate Studies Institute has found that 71% of American adults fail tests covering 

basic American history and government (Cribb & Bunting, 2008), and when Newsweek 

gave a sample of American adults the citizenship test, 38% scored too low to become 

citizens of their own country (Romano, 2011).  

These dismal outcomes are the product of the educational status quo, and I would 

argue that they result from failure to make evidence-based reforms to improve long-term 

learning outcomes. Instead, policies favor quick fixes and interventions that produce 

illusory, short-term performance gains masquerading as accountability in the eyes of a 

short-sighted public (e.g., annual statewide testing and teaching-to-the-test; propping up 

graduation rates by lowering academic standards). As we have shown, college curricula, 

course structure, and teaching practices reflect this state of affairs, and employers have 

begun to chafe at how poorly prepared many recent graduates are for the workforce. A 

2010 survey of over 300 employers found that only 28% felt that 4-year colleges and 

universities adequately prepared students to fulfill workplace demands (Hart Research 

Associates, 2010). A more recent, less formal survey of 64,000 managers revealed that 

60% find new graduates lacking in critical thinking and 44% find them lacking writing 

proficiency (2016 Workforce Skills Preparedness Report). This agrees with data from the 

Program for the International Assessment of Adult Competencies (PIAAC) which shows 

that more than half of adults born after 1980 (i.e., millennials) ranked among the lowest 

worldwide in literacy, numeracy, and problem-solving in technology rich environments at 

all levels of educational attainment (Coley, Goodman, & Sands, 2015). Ten years earlier, 

the US Department of Education (2006) issued this warning: 
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At a time when we need to be increasing the quality of learning outcomes and the 
economic value of a college education, there are disturbing signs that suggest we 
are moving in the opposite direction. As a result, the continued ability of 
American postsecondary institutions to produce informed and skilled citizens who 
are able to lead and compete in the 21st-century global marketplace may soon be 
in question. (p. 12) 

One proposal is to further increase the quantity of education that students consume, 

but this solution runs counter to the well-established finding that while the number of 

students with college degrees continues to skyrocket, learning outcomes continue to 

stagnate or decline. Focus needs to shift dramatically to the quality of education. A recent 

report by the Educational Testing Service cautions that “simply providing more education 

may not be the answer. There needs to be a greater focus on skills—not just educational 

attainment—or we are likely to experience adverse consequences that could undermine the 

fabric of our democracy and community” (ETS, 2016, p. 5). I agree with this, but I interpret 

“skills” broadly to mean any concrete learning outcomes that students carry with them into 

the future and apply outside of the classroom: the focus should be on what students can do 

in the future, not merely how many credit hours they accumulated in the past. 

Owing to these deficits, an entire job-training industry has sprung up in recent years 

in the form of technology “bootcamps” and other alternative postsecondary programs, 

many of which are for-profit, and some of which offer industry-recognized credentials and 

job guarantees upon graduation (Crispe, 2017). Indeed, the number of certificates awarded 

by postsecondary institutions increased by 73% from 2000 to 2013—faster than the rate of 

bachelor’s degrees—with almost half awarded by community colleges (Brown & 

Kurzweil, 2017). Among the for-profit, postsecondary institutions not eligible for 

government funding, around 700,000 students were enrolled in short-term certificate 

programs in 2012. In March 2016, approximately 35 million students were enrolled in 

Massive Open Online Courses (MOOCs), and almost 20,000 students were projected to 
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graduate from coding bootcamps (Brown & Kurzweil, 2017). While many MOOC and 

bootcamp participants already hold a degree, these programs tend to cost less, take less 

time, offer more flexible formats, and align better with employer-defined skills than do 

traditional degree programs. If these new formats make better use of learning science than 

traditional higher education, producing graduates with demonstrably better learning 

outcomes, then the pedagogical reputation of the academy will continue to suffer. 

To improve the quality of undergraduate education, research-based best-practices 

must be implemented. One way to achieve this is to increase educational support staff in 

college courses to help manage and maintain an effective learning environment. For 

example, Talbot, Hartley, Marzetta, and Wee (2015) make use of learning assistants—

undergraduate facilitators who have previously taken the course—to incorporate active 

learning and increase academic-task engagement in high-enrollment undergraduate science 

courses and to help with the additional grading that this increased activity inevitably 

produces.  

In my own teaching as an advanced graduate student, I receive similar support. I 

am the instructor of record for an introductory statistics course at UT Austin developed by 

an educational psychologist and former graduate of my doctoral program. To qualify for 

such a teaching position as a doctoral student, it was required to take a college teaching 

methodologies course surveying the latest research into effective educational practices and 

how to implement them (arguably more training in these topics than your average professor 

receives). My 100-student course section has a graduate-student TA who holds office 

hours, grades exams, and facilitates the laboratory component. In addition, the course 

receives support in the form of three undergraduate TAs, recruited from previous students 

who were successful in the course and showed exceptional potential to help their peers. 

These undergraduate TAs attend class each day and facilitate active learning (e.g., by 
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circulating among small-group discussions after a question is posed to give feedback) and 

they grade students’ weekly homework assignments and laboratory exercises. This format 

allows me to focus my attention on improving my lectures and assignments, individual 

students who might be experiencing difficulties in the course, and student projects that 

require specific, individualized feedback. I do not have any data showing improvements to 

students’ long-term outcomes, but the course encourages student engagement and makes 

full use of evidence-based recommendations for such outcomes. 

This arrangement could be extremely beneficial for professors who may be too 

strapped for time, or otherwise lack the incentive, to redesign their courses in ways that 

make lectures more effortful and grading more onerous. Professors have too many students 

to teach as it is: While the percentage of 18- to 24-year-olds enrolled in post-secondary, 

degree-granting institutions in the US has increased dramatically from 25.7% in 1970 (~7 

million) to 40.5% in 2015 (~17 million; Snyder, deBrey, & Dillow, 2018, chap. 3), during 

roughly the same time period the percentage of full-time instructional faculty at US 

colleges and universities fell from 78% in 1970 to only 52% in 2005 (Snyder, 1993). This 

means that today, most professors have to balance a full teaching load including enormous 

survey courses with research and many other professional or administrative responsibilities 

(Jacobs, 2004). Considering that research is much more important for tenure decisions 

across the board, it is easy to see why courses continue to be taught with easier traditional 

approaches like passive lectures and few quizzes or assignments (e.g., Remler & Pema, 

2009; Cadez, Dimovski, & Groff, 2017). 

Furthermore, relative to other aspects of their job, faculty (especially those at large, 

research-focused institutions) often do not enjoy teaching multiple sections of large 

undergraduate courses year after year (e.g., Alpay & Verschoor, 2013). This is largely 

because it eats into the little time they have to extend their own research program (on which 
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performance evaluations are based), to teach upper-division courses in their specialist area, 

and to mentor more advanced students as they get ready to embark on their own careers. 

An arrangement in which faculty receive additional help from facilitators in their large 

undergraduate courses would lighten these burdens while improving the overall quality of 

their courses for students by keeping them active and engaged with the course content in 

and out of the classroom!  

My recommendations are no less applicable in cases where the professors are stellar 

educators. We have seen that for large undergraduate courses, instructor “quality” (as 

indicated by student evaluations, academic credentials, years of experience, or scientific 

productivity) matters much less for students’ learning than what they are actually doing in 

the classroom: what processes they engage as they grapple with the material that result in 

better encoding, longer retention, and improved odds of transfer (see Deslauriers. Schelew, 

& Wieman, 2011). It is my hope that this study will call attention to the need for better 

alignment between “what works” and “the way things are done” in large college courses, 

spurring changes in course structure and classroom dynamics to support the outcomes that 

we as educators care about most: our students’ success.  

After a century of incredible social and technological progress, education in 

America remains fundamentally unchanged. Charles W. Eliot, president of Harvard from 

1869 to 1909 and one of the chief historical architects of our modern higher education 

system (who, among other sweeping innovations, introduced standardized course credits), 

wrote of his many reforms that “It is not well, that a house should last a century—it 

becomes unsuited to the improved habits of succeeding generations” (Gerhard, 1955, p. 

652). The time has again come to rebuild our house: as instructors and administrators at all 

levels, we ignore this admonition at our peril. 
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PART II:  SUBSEQUENT-COURSE ANALYSIS 

Chapter Five:  Introduction 

OVERVIEW 

In Part I of this study, a large-scale syllabus review of normative educational 

practices (e.g., course structure, teaching methods, learning activities) was conducted 

across more than 1,000 high-enrollment undergraduate courses at a large public institution. 

Based on these findings, I now use student outcome data to conduct a subsequent-course 

analysis: an assessment of the extent to which certain prerequisite-course variables affect 

student performance in their subsequent course over the same subject. Specifically, taking 

a section of an introductory courses with many retrieval practice requirements is compared 

with taking a section of the same course with few retrieval practice opportunities, and the 

causal effect of taking a prerequisite course high in retrieval practice is estimated using 

inverse propensity-score weighted regressions. Variations in model specification (fixed 

effects, random effects, cluster-robust error models) are examined to assess robustness. 

Finally, student subsequent-course performance was regressed on the full set of educational 

relevant variables using lasso-regularized regression in an attempt to identify additional 

variables related to retrieval practice and spacing as important prerequisite-course 

predictors of subsequent student success. 

RATIONALE AND LITERATURE REVIEW 

All systems of education are predicated on assumptions about how people learn. 

Though rarely stated outright, these assumptions are always implicit in what exactly is 

being taught and why, how, to whom, where, and when. In some instances, these 

assumptions are conscious choices on the part of educators and administrators; in the ideal 
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case, they will have been intentionally grounded in scientific research. Often, however, 

these assumptions are unconscious byproducts of political considerations, practical 

expedients, or accidents of history. Take, for example, the typical 9-month school year with 

a break for the summer. This became standard at the end of the 19th century when fully 

85% of Americans worked in agriculture; today, the number of Americans who do 

agricultural work is less than 3% (Cooper, Nye, Charlton, Lindsay, & Greathouse, 1996). 

What if this arrangement—adaptive in its original context but now an arbitrary feature of 

modern life—is suboptimal for learning?  

Zooming in on the standard school-year reveals further subdivisions, usually 

semesters or trimesters, during which full-time students are required to take a minimum 

number of courses. College courses are self-contained units of instruction covering a 

circumscribed topic which meet for a set number of hours each week. Since 1910, for 

reasons of bureaucratic efficiency, the amount of time students’ courses meet for each week 

(the number of semester “credit hours”) has been the primary measure of attainment in 

American higher education (Wellman, 2005). At the University of Texas, for example, 

students need 120 semester-hours to receive an undergraduate degree, provided they 

maintain a 2.0 GPA (General Requirements, 2017).  

From very early on, this policy of treating units of class-time as a valid measure of 

student learning was met with resistance. Norman Foerster (1937), for example, likens the 

credit system to “purchasing a diploma on the installment plan” and complains that “once 

a credit was earned... it would be deposited and indelibly recorded in the registrar's savings 

bank, while the substance of the course could be, if one wished, happily forgotten” (p. 97). 

However, despite questionable assumptions, this system of accounting has become so 

entrenched that it has persisted relatively unchallenged for over one hundred years. 
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Zooming in further, we see that within a typical college course, subject matter is 

broken down into several stand-alone units of material. Students attend lectures and are 

given readings over each unit's material, which they are then tested over before moving on 

to the next unit and repeating the process (King, 1993). This non-cumulative tendency is 

exacerbated by textbooks, which present material one topic at a time instead of periodically 

returning to prior topics (Rohrer & Taylor, 2007).  

Since unit exams often receive more weight than other assignments, they thus 

account for the greatest proportion of the final course grade and largely determine 

advancement. (In Part I, a survey of 1075 large undergraduate courses revealed that in the 

median course, 3 exams accounted for 75% of the course grade.) Notice that here learning 

has been implicitly equated with passing exams. In general, students are considered to have 

“learned” the material if they have “passed” each unit in a given course; if they have passed 

enough courses, they are assumed to have learned enough to merit a degree. We care about 

students passing exams and courses because we believe that it indicates what students will 

be able to remember and use at a future time, in a different place. Are the assumptions we 

make about learning and transfer well founded?  

Accountability for student learning outcomes in higher education, where it exists at 

all, is very decentralized: whereas high school students must pass minimum-competence 

exams by law in order to graduate (Popham, 1978), there are no such comprehensive 

assessments of learning in higher education. Furthermore, professors usually receive no 

formal evaluations of their teaching effectiveness beyond student ratings on end-of-course 

surveys, a problematic metric at best (Shevlin, Banyard, Davies, & Griffiths, 2010; 

Stroebe, 2016). Thus, not only do instructors have to teach course material in a way that 

promotes durable, transferable learning; they are also responsible for creating cumulative 

performance metrics that accurately reflect this learning. A grade in the gradebook thus 
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takes on added importance: it is a final verdict reached by a professor about students’ 

mastery of the course material. To be effective, this judgment should do more than 

document a student’s past performance: it should act as a promissory note, vouching for 

what a student knows about a subject and what a student is capable of doing on their own. 

After all, what is important is not what students know in the classroom on the day of the 

final exam, but what they can remember and apply long after the course has ended. 

For course performance to reflect these durable learning outcomes, the type of work 

that students produce and are graded on must engage cognitive processes that support them. 

Indeed, there is reason to believe that what students do in a given class (lectures, readings, 

assignments, activities, etc.) is far more important for retention and transfer than professor-

level variables such as teaching experience. For example, Deslauriers, Schelew, and 

Wieman (2011) compared learning in two large (270-student) undergraduate Physics 

course sections taught concurrently at the same university: one was taught in a “traditional 

lecture” style by an engaging lecturer with high course evaluations and many years of 

experience teaching; the other, experimental group was taught “using instruction based on 

research in cognitive psychology” by a post-doctoral researcher who had never taught a 

course before. The instructional intervention lasted only a week and consisted of short pre-

class readings, reading quizzes, in-class clicker questions with pair discussions, and small-

group learning tasks; there was no lecturing, but guidance and feedback was provided by 

the intervention instructor. A 12-question test over material covered during the 

experimental week was developed collaboratively by both instructors, who “had agreed to 

make this a learning competition” (p. 863). This test was given to students during the next 

class period one week later. Students in the traditional lecture format averaged 41%, while 

students in the intervention condition averaged 74%, an enormous 2.5 standard deviation 

effect in favor of the intervention with pre-class quizzes, in-class retrieval practice, and 
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group learning. Unfortunately, it is difficult to know which of these elements were effective 

and whether they would have each been effective in isolation. One aim of the present 

project is to compare across courses that are otherwise similar, but that differ on important 

variables (e.g., group assignments, in-class retrieval practice) in order to determine the 

individual efficacy of these variables as well as the best “package” or combination of such 

variables for success in subsequent courses. Furthermore, this was a one-shot learning 

paradigm; in the present study, I am interested in the impact of these course-level variables 

over time, particularly on long-term retention and transfer. 

If the primary goal of education is to teach students knowledge and skills that 

remain accessible to them over time and that can be flexibly applied outside of the 

classroom, then instruction should be designed with these goals foremost in mind. 

Cognitive psychology has produced a large body of research on learning and memory, and 

well-replicated findings have come together to yield robust principles about how to 

facilitate such long-term retention and transfer of learning. From this perspective, three of 

the most insidious assumptions made in education are (1) that testing is for assessment 

purposes only—that a test is a learning-neutral event for measuring what a given student 

knows; (2) that lectures and reading assignments determine what is learned—that passive 

and active forms of learning are equivalent; and (3) that performance on a test is proof of 

learning that will persist unaided and automatically transfer to new contexts.  

A course based on these assumptions would have a small number of high-stakes 

exams to measure what knowledge has been acquired, but no more, because this would be 

time better spent learning. Since learning is thought to occur through lectures and assigned 

readings, in-class activities and group assignments would be considered inefficient make-

work and thus avoided. Further, in such a course, previously covered content would not be 
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revisited after the exam, because students' scores are evidence that the material has already 

been learned—no need to waste time repeating ourselves!   

It is likely that most large college courses fit this pattern. In Part I of this study, a 

sweeping syllabus review of 1075 large undergraduate courses revealed that the median 

number of exams (including final exams) was 3 and the median grade-weight for exams in 

the course rubric was 75%. More than 80% of courses had no graded in-class assignments 

and the average grade weight courses gave for such assignments was 2% (72% had no in-

class activities at all besides listening to lecture). There was also little evidence that 

students are reviewing material after unit exams: only 4% of courses reported having 

cumulative exams, though 39% reported having cumulative final exams. 

This design would be very sensible if the foregoing assumptions were to hold. And since 

the course abruptly ends after 15 weeks, they appear to hold! Unless a professor were to 

actively seek disconfirming evidence—say, by following up with students later to assess 

their retention of course material and their ability to apply it—the final course grades that 

they submit are readily accepted by all parties (professors, students, administrators, and 

ultimately employers) as proof that teaching has happened and that learning has happened. 

Unfortunately, these assumptions are not only wrong, they are completely at odds 

with two of the most powerful, dependable techniques in experimental psychology for 

promoting long-term retention and transfer of learning—retrieval practice (the “testing 

effect”; Roediger & Butler, 2011 for review) and spaced repetition (the “spacing effect”; 

Cepeda et al. 2006 for review). Indeed, Hattie's (2008) sweeping synthesis of over 800 

meta-analyses found that, of the 138 variables associated with achievement, the third 

largest effect (average d = 0.88 across 78 effects) was formative assessment (i.e., low-

stakes retrieval practice with feedback), and spaced practice was not far behind at thirteenth 

(d = 0.71, 112 effects). In the following section, I will review the evidence for these 
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principles with respect to retention and transfer, followed by a discussion of how they can 

be applied in higher education, even in large classes. After this, I will describe a technique 

for assessing the prevalence of these and other educational practices in college classrooms; 

finally, I will propose methods for testing whether these course-level variables actually 

increase student success in subsequent courses—a clearer indication of retention and 

transfer than a course grade can offer. 

Testing and Spacing for Retention and Transfer 

The notion that testing could have beneficial effects on learning has been gradually 

making inroads into modern educational practice. For example, a modern textbook on 

college teaching methodology makes a clear distinction between summative assessment 

(“a performance evaluation”) and formative assessment (“intended to furnish helpful 

feedback”; Nilson, 2010, p. 281). But even in the absence of feedback, testing can be a 

potent learning tool: the act of retrieving information from memory increases the likelihood 

that the information will be retrievable in the future, a finding known as the testing effect 

(Carrier & Pashler, 1992; Roediger & Butler, 2011). Indeed, after initial learning, being 

tested produces better retention of the material than an equivalent amount of time spent 

restudying it. Furthermore, the benefit of testing over restudy becomes larger as the delay 

before the final test grows longer: relative to restudying, retrieving information from 

memory results in slower forgetting over time and thus better long-term retention (Kornell, 

Bjork, & Garcia, 2011), an effect which holds both in the laboratory and in the classroom 

(e.g., McDaniel et al., 2011).  

The memory retrieval required by testing is thought to enhance learning by directly 

modifying the retrieved content (e.g., by elaborating upon the representation of this content 

in memory, increasing its availability and accessibility; Bjork & Bjork, 1992). Though 
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retention is a goal in its own right, it is also a crucial first step for being able to apply the 

knowledge one has recalled to new contexts. But retrieval practice has recently been found 

to have a more direct role than just retention: compared to restudying, repeated testing can 

lead to better transfer performance on novel inference questions (Butler, 2010; Rohrer, 

Taylor, & Snoler, 2010) and on spatial learning tasks (Carpenter & Kelly, 2012). What's 

more, introducing variability during retrieval appears to enhance the transfer of learning to 

novel problems above and beyond the benefits of repeated testing. Specifically, practicing 

retrieval with different questions that tap the same underlying concept makes it more likely 

that one can apply knowledge of the underlying concept to novel questions, relative to 

retrieval practice with the same question (Butler, Black-Maier, Raley, & Marsh, 2017).  

Related to the testing effect—and perhaps even more well-known—is the spacing 

effect: the finding that spacing out one’s studying or testing sessions produces superior 

learning relative to an equivalent amount of studying or testing in a single sitting or in 

sessions occurring closer together in time (Cepeda et al., 2006 for review). That is, students 

who spread their practice out over time enjoy greater long-term retention of that 

information than those who practice for the same amount of time but do not space it out. 

The benefit of spaced practice over massed practice on retention holds across learners of 

all ages and subject-matter of all kinds, including learning grammar, spelling, reading 

skills, advanced mathematics, motor skills, foreign language vocabulary, history, and more 

(Carpenter et al., 2012). 

Further, this finding is neither new nor unusual (Pyle, 1913; Austin, 1921; Gordon, 

1925). Almost a century ago, Austin (1921) found that reading a text five times in one day 

was just as effective as reading the text once a day for five days on tests of immediate 

recall. However, the spaced readings resulted in much better performance on delayed 

retention tests, and the effect grew with the size of the delay. The magnitude, robustness, 
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and consistency of findings related to the spacing effect led Dempster (1988) to call it “one 

of the most remarkable phenomena to emerge from laboratory research on learning”...but 

tellingly, this quote appears in an article entitled “The Spacing Effect: A Case Study in the 

Failure to Apply the Results of Psychological Research.”  

Teachers often admonish their students to study a little bit each day instead of 

cramming right before the test, and thus appear to have some intuitive understanding that 

spaced-out is better than massed-together. However, this principle is seldom used in the 

classroom or reflected in course structure (Dempster, 1988).  As mentioned above, the 

standard format of a college course is still such that a few high-stakes tests covering distinct 

units of material account for the bulk of students' grades. If cramming right before these 

exams can produce equivalent (sometimes better) performance, then students have little 

reason to space out their studying. Since spacing results in superior long-term retention, 

this format unintentionally rewards behaviors that lead to transitory learning while 

penalizing those that lead to durable learning. For example, Rawson and Kintsch (2005) 

had college students study expository texts and take tests over them. One group of students 

read the text only once, while the other two groups read it twice: one of these two groups 

(the massed-study condition) read the text twice in a row, while the other (the spaced-study 

condition) read it two times with a week in between. The final test was given either 

immediately or two days after the final reading and consisted of a recall component plus 

12 short-answer comprehension questions. Two experiments using two different texts 

produced the same results: massed study produced significantly better performance on the 

immediate test, but spaced study produced significantly better performance on the delayed 

test. Thus, cramming can be an effective way to get high marks on exams, but it is clearly 

a poor way to achieve durable learning.  
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Studies like these demonstrate improved retention over days or weeks, but how do 

we know that spaced retrieval practice is better for long-term retention? And just how long 

is long-term retention: can we achieve indefinite retention, and if not, what’s the best we 

can hope for? Harry Bahrick’s pioneering research into long-term retention has offered 

many exciting answers to these questions. With respect to the first question posed, he 

conducted a 9-year longitudinal study using members of his own family as participants 

(Bahrick et al., 1993). They learned and relearned 300 English–foreign-language word 

pairs, varying both the number of relearning sessions (13 vs. 26) and the interval between 

sessions (14, 28, or 56 days) within subjects. After the training, retention was tested 1, 2, 

3, and 5 years later. Bahrick found strong main effects on retention for both the additional 

sessions and the longer spacing intervals. In fact, just 13 retraining sessions spaced 56 days 

apart produced the same retention benefit as 26 sessions spaced 14 days apart. But while 

the longer spacing intervals resulted in much better retention 5 years later, they hindered 

initial learning during the training sessions. Thus, we are again cautioned against the 

dangers of judging learning from performance on tests given soon afterwards: immediate 

and long-term performance are often inversely related.  

The second question (exactly how long is long-term retention?) has proven more 

difficult to answer definitively. However, many important insights have been offered by 

analyzing people's memory for things like basic Spanish vocabulary (material covered in 

an Introductory Spanish course) and basic algebra rules (those taught in an Algebra I 

course) years after they last encountered the material (Bahrick, 1993, 1984a; Bahrick, 

Bahrick, & Wittinger, 1975). These cross-sectional studies survey hundreds of people 

about their background in a given subject—when their most recent course in it was, how 

many classes total they took in it, what grades they received in those classes, and to what 

extent they have used the material since they quit learning it. This results in a sample of 
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participants who vary widely in their time since content acquisition, how long it had been 

since they stopped using the content (the “retention interval"), and how well the content 

was learned initially (e.g., number of courses), all naturalistically acquired. Then, 

participants are tested over their retention of the basic introductory material in these 

subjects (e.g., a test of introductory Spanish vocabulary, a test of basic algebra skills).  

From this data, researchers then generate a regression equation which can be used 

to plot retention over time for different degrees of initial learning (i.e., different amounts 

of retrieval practice, spacing, and elaboration that occurs when taking additional courses 

in these subjects), while controlling for rehearsals during the retention interval (see Figure 

37). One very interesting finding from these analyses is that in general, retention declines 

exponentially for the first 3 to 6 years after learning has ceased, but that after this time it 

remains largely unchanged, even after periods of up to 50 years. Concretely, 3 years after 

taking a single semester of Spanish, almost all of the basic Spanish–English vocabulary 

covered in the course will be lost without any subsequent practice. However, those who 

took 5 semesters of Spanish recall around 60% of their basic Spanish vocabulary more than 

25 years later, controlling for subsequent practice (Bahrick, 1984a).  
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Figure 37 Retention of basic Spanish-English vocabulary (recall) by level of initial 
learning (number of semesters), with zero subsequent rehearsals. Figure 
adapted from Bahrick (1984a; Fig. 6) using the regression equation given in 
his Table 8. 

Still more robust findings are observed with retention of basic math: it has been 

shown that people who take several mathematics courses in college show no significant 

declines in their retention of introductory algebra or geometry content during a 50-year 

retention interval, even if they have not used or in any way rehearsed the material during 

that time (Bahrick & Hall, 1991). On the other hand, students who performed equally well 

in their high school math courses but took no additional math in college were found to have 

forgotten almost everything during the same time period. Note that these studies are unable 

to separate out the specific effects of spacing and retrieval-practice on retention. They do 
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show, however, that if your initial learning was high (i.e., multiple learning sessions spaced 

out over time), your long-term retention stabilizes at a higher level than would be the case 

if your initial learning was low; if the content is acquired over a very short period, retention 

tends to decline rapidly and may be lost altogether. Since taking multiple semesters of 

mathematics or a foreign language requires you to repeatedly access this basic knowledge 

over a long period of time, the retention benefits for this material are most parsimoniously 

attributable to spaced retrieval practice.  

TWO CASE STUDIES OF SPACED RETRIEVAL PRACTICE 

Case Study 1: Benefits in Real-World Medical Settings 

Even very simple spaced-practice interventions can have a large impact on both 

retention of knowledge and on transfer into real-world contexts. Dolan, Yialamas, and 

McMahon (2015) conducted a randomized controlled study with medical students who 

were completing their residency: after receiving a 1-hour lesson on osteoporosis care and 

fracture prevention, students in the control group received one email containing a 25-item 

multiple choice self-assessment, while students in the intervention group received the same 

25 multiple choice questions, but instead of being delivered all at once, 1–3 questions were 

emailed at a time over a 3–6 month period. Items answered correctly were repeated once 

28 days later, while items answered incorrectly were repeated twice at 14-day intervals (the 

variability in the length of time for treatment was due to differences in the number of 

incorrect responses among students). Ten months after the start of the intervention, the 

treatment group significantly outperformed the control not only on a bone-health 

knowledge assessment, but also on real clinical outcome measures: they screened more 

patients for low bone density, screened them more accurately, and effectively treated more 

who were at risk for fracture. This is not an isolated result: other experiments using similar 
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spaced interventions have observed improved retention and transfer to clinical practice 

(Price et al., 2010).  Studies like these are especially important, given that medical students 

have been shown to forget a substantial portion of basic knowledge by the time they begin 

clinical rotations (Butler & Raley, 2015).  

Case Study 2: Benefits in Large College Classrooms  

In 2011, two professors in the Department of Psychology at the University of Texas 

at Austin decided to integrate spaced retrieval practice into their large Introductory 

Psychology course (Pennebaker, Gosling, & Ferrell, 2013). These professors had been 

teaching this course every year from 2006 to 2011 using “traditional approaches” in which 

4 in-class multiple choice exams were given across the semester and accounted for 86% of 

students' final grade. In their new course format, tests were eliminated altogether; instead, 

students took in-class quizzes each day, for a total of 26 quizzes that together accounted 

for 86% of students' final grade. Quizzes consisted of 8 items: seven covered material from 

the previous lecture and readings, while one item was personalized, repeating a question 

that they had previously missed. Quizzes were made available through an online platform 

and students completed them using their laptops. Other aspects of the course, including the 

lecture format, content, and sequence, were intentionally kept constant.  

The results of their comparison revealed that performance on items common to both 

old course exams and daily quizzes was marginally better in the new frequent-quizzing 

format (77.1% vs. 71.2%, p = .06). They also found that students’ average performance in 

other classes taken concurrently, as well as their average performance in classes taken the 

following semester, was significantly better for those in the frequent-quizzing course, 

controlling for year and SES. The authors suggested that the frequent-quizzing format may 

have encouraged self-regulatory skills and study habits which generalized to other courses, 
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though this hypothesis was not directly tested. Finally, they examined socio-economic 

status (SES) disparities and class performance, finding a significant interaction between 

SES and course format on course grades. Specifically, grade differences between higher 

and lower SES students were twice as large in the traditional course than in the frequent-

quizzing course. 

This study is of immediate relevance to the present project for several reasons. First, 

it was conducted in an authentic undergraduate classroom setting: a high-enrollment, 

lecture-based introductory course at a large public university. Second, it shows that 

implementing a system of frequent testing is feasible, even in large (~500 student) 

introductory courses. Third, it provides still more evidence that spaced retrieval practice is 

associated with better outcomes on several levels, including better performance in 

concurrent and subsequent courses, as well as reductions in the SES achievement gap. 

Fourth, it required very little change to instructors' teaching or course materials: the same 

lecture format was observed and the same topics were covered in the same way. Finally, 

by examining how one course can influence performance in concurrent and subsequent 

courses, this study sets an important precedent for studying the broader, longer-term, cross-

curriculum effects of college learning experiences. 

RETENTION AND TRANSFER AS PREPARATION FOR FUTURE LEARNING 

Transfer of learning occurs when something previously learned is applied to new 

situations. However, conceptions of how to facilitate transfer through instruction have 

differed greatly over the years. In most of the research literature, transfer of learning has 

been measured by scores on a final transfer problem in tightly controlled experimental 

settings: no seeking help from other resources, no opportunity to test possible solutions and 

revise in light of feedback (e.g., Gick & Holyoak, 1980). While this “sequestered problem 
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solving” paradigm is a valid approach to measuring transfer, it restricts the definition of 

the phenomenon by limiting the type of evidence admissible for it: such designs implicitly 

equate transfer with the ability to directly apply a previously learned concept to a new 

problem of a specific type (Bransford & Schwartz, 1999).  

A more fruitful characterization of transfer is one that captures the benefits of 

previous learning not just on task performance, but also on the speed and quality of new 

learning. This idea is as old as memory research itself (Ebbinghaus' famous forgetting 

curve plotted “savings” in the time required to relearn a list; Ebbinghaus, 1885/1913) and 

it permits much finer measurements of transfer. Importantly, to conceive of transfer as 

“preparation for future learning” (Bransford & Schwartz, 1999) reinforces the notion that 

transfer is not an all-or-none proposition: the influence of past learning on the present is 

always a question of degree. 

In the present study, I will avoid the issue of “sequestered problem solving” by 

measuring transfer through performance on subsequent related coursework. Measuring 

transfer from a prerequisite course by examining students’ achievement in the next-in-

series course provides a summative measure of their performance on a variety of relevant 

transfer tasks over time (such as graded student work) in a naturalistic setting where 

students are free to make use of resources that facilitate such learning. That being said, 

some transfer questions worth posing will require a narrower criterion to adequately assess, 

such as how the aspects of writing-intensive coursework influence students' future writing 

ability in other courses. This sort of transfer question would be better addressed by direct-

application methodology, such as collecting samples of students' writing and assessing 

their quality. In the present study, because our operationalization of transfer presupposes 

retention, and because direct tests of retention for material covered in previous courses 

would be prohibitively difficult, retention will not be examined in isolation. 



 140 

 

THE PRESENT STUDY 

To what extent are the research-based principles discussed above being used in 

higher education? Despite widespread advances data collection, educational practices in 

college courses remain largely unmeasured: beyond broad generalizations about the 

traditional approaches (lecture-then-test, sage-on-the-stage; King, 2010), little is known 

about the scope of course schedules, teaching practices, classroom activities, and out-of-

class assignments in large college courses. This dearth of information means that little 

research has been done to examine how course features such as opportunities for retrieval 

practice and cumulative exams are associated with student outcomes such as long-term 

retention and transfer of learning. Though there have been previous attempts to characterize 

what goes on in college courses using syllabi (e.g., Graves, Hyland, & Samuels 2010; see 

below), there is virtually no research connecting these course-level variables to student 

outcomes. 

However, because of the large-scale syllabus review undertaken in Part I of this study, I 

am now well positioned to explore questions of this nature. Having developed a rich corpus 

of data about course designs, teaching practices, and learning activities in large college 

courses, and having mined this descriptive data for associations of interest, the all-

important issue of student outcomes can finally be addressed: Specifically, what course-

level variables predict future student achievement? Does taking a course section with more 

retrieval practice opportunities lead to improved transfer?  
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Research Questions and Hypotheses  

I approach these two broad questions by examining course sequences (i.e., two 

courses in the same academic subject in which one course is an immediate prerequisite for 

the other) to estimate effects of certain course variables hypothesized a priori to positively 

impact subsequent-course performance and to explore what other features of prerequisite 

courses are predictive of success in the next course in the sequence. Based on previous 

research on the efficacy of educational practices reviewed above and leveraging our 

previous descriptive results, two main questions of interest are posed for investigation: 

1. Does taking a prerequisite course with more spaced retrieval practice result in better 

performance in the subsequent course? Specifically, it is hypothesized that 

compared to students in that subsequent course whose prerequisite course featured 

little graded retrieval practice, those in the prerequisite course with more graded 

retrieval practice will have higher subsequent-course achievement. Additionally, I 

expect to find an association between subsequent-course performance and variables 

related to both formal spacing and retrieval practice opportunities (e.g., number of 

quizzes/exams, cumulative exams) as well as more informal, ungraded 

opportunities (e.g., classroom response systems, availability of practice quizzes). 

2. Is taking a prerequisite course with more active learning during class-time (as 

indicated by number of in-class assignments, descriptions of a flipped classroom, 

or other in-class active-learning features) predictive of better performance in the 

subsequent course? It is hypothesized that prerequisite courses with active-learning 

elements will be associated with higher average subsequent-course grades than 

prerequisite courses with less active learning. 

Additionally, because students are not randomly assigned to their prerequisite courses, I 

must control for any differences between treatment groups (e.g., any preexisting 
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demographic differences between students in prerequisite courses with retrieval practice 

and students in prerequisite courses without retrieval practice). This is done in an effort to 

rule out pre-existing differences between groups as an alternative explanation for any 

observed effects that would otherwise confound the relationship between treatment 

(specifically, high retrieval practice) and the outcome (subsequent course performance). 

This will be achieved using propensity score methods and covariate balance checks as 

detailed in the Analysis section below. 
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Chapter Six:  Research Design 

For important background about the syllabus review, see the Procedure and Methods 

section in Part I. In what follows, familiarity with this section is taken for granted.  

SUBSEQUENT-COURSE ANALYSIS WITH OBSERVATIONAL DATA 

To preview, four different modeling approaches will be used to address the research 

questions in the present study—regression with fixed effects of course section, regression 

with random effects of course section, regression with cluster-robust standard errors, and 

individual regressions within a given courses. As I cannot randomly assign students to 

college courses, these methods are inherently quasi-experimental, but I employ propensity-

score weighting techniques to ensure that treatment and control groups have very similar 

distributions of covariates. Within such homogenous groups, differences in outcome are 

more plausibly attributed to the treatment, since the groups are otherwise as equivalent as 

possible (a situation which, in an experimental study, is achieved with a random treatment-

assignment mechanism). This approach is akin to a retrospective cohort design in medical 

research; we want to assess the impact of course-level variables on performance in 

subsequent courses, so student records (here, institutional and demographic data) are used 

to establish two groups of subjects who are as alike as possible on potentially confounding 

covariates but who differ from each other on the independent variable of interest. These 

two groups are then compared with respect to the outcome as if the independent variable 

had been randomly assigned (Mann, 2003). 

For example, one characteristic of interest in the present study is the presence of 

retrieval practice opportunities in a student's prerequisite course (say, Chemistry 301), and 

the outcome of interest is a student's grade in the subsequent course (Chemistry 302, the 

next course in the sequence). A basic approach would be to use a linear regression 
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framework to explore whether there was a significant difference in subsequent-course 

grades for students whose prerequisite courses had, for example, a large retrieval-practice 

component, versus those whose prerequisite courses did not. However, the presence or 

absence of retrieval practice in a prerequisite course is unlikely to be the only variable with 

respect to which courses differ, so I aggregate results across a variety of courses, I try to 

account for all such variability by explicitly modeling it wherever possible, and I eliminate 

systematic confounds using propensity-score methods to achieve covariate balance. 

Despite the importance of this topic, very little research exists about how students' 

experiences in one course are associated with their performance in subsequent courses, and 

thus there is no standard approach for conducting such an analysis. However, in the 

economics literature addressing teacher quality there are several studies that set a precedent 

for using students’ subsequent course grades as a measure of learning that took place in the 

prerequisite course (e.g., Carrell & West, 2010; Weinberg, Hashimoto, & Fleisher, 2010). 

For example, value-added modeling (VAM) approaches seek to measure teacher quality 

by assessing the unique contributions of teachers to students’ academic attainment 

(Hanushek & Rivkin, 2010; for review, see Koedel, Mihaly, & Rockoff, 2015). Such 

approaches isolate the effects of teachers on student achievement while controlling for 

other factors that could explain differences in student performance, such as student 

demographic information, socioeconomic characteristics, and previous academic 

achievement. Often using standardized test scores rather than subsequent course 

performance, these approaches have identified great variability in teacher effectiveness, 

even within the same school.  

I look to value-added methods for modeling methodology, but my subsequent 

course analysis departs from such approaches in several ways. First, whereas most of the 

teacher quality literature focuses on primary and secondary education, we examine teacher 
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effects in a post-secondary setting. Only a small number of papers have attempted to use 

such techniques in a higher-education setting (e.g., Carrell & West, 2010; Hoffman & 

Oreopoulos, 2009; Weinberg, Fleisher, & Hashimoto, 2009). Furthermore, studies in the 

VAM tradition rely on education production functions which estimate the overall 

contribution of each teacher to student outcomes, disregarding individual teacher 

characteristics which are of interest in the present study. Furthermore, such studies 

typically use an outcome variable that measures short-term gain (achievement test score, 

final grade in current course), controlling for previous grades or achievement scores 

(Hanushek & Rivkin, 2010).  

In contrast, the present study seeks to estimate the effect of course characteristics 

(rather than overall teacher effects) on undergraduate students’ learning as indicated by 

their subsequent course performance, controlling for background variables. One approach 

to modeling such a relationship is shown below. 

"#$% = '$ + '% + X#*+# + ,#$% (1) 

Here, "#$%  represents the grade of student i who took prerequisite course p and 

subsequent course s; '$ represents the unique effect of the prerequisite course p on the 

outcome; '$ represents the unique effect of the subsequent course s on the outcome (to 

control for unmeasured aspects of the environment that differ across classrooms);	+# is a 

vector representing the contributions of each background covariate for student i; and ,#$% 

is an error term that captures unmeasured influences on the outcome. In this formulation, 

'$ indicates how well students who took prerequisite course p do in their subsequent course 

s after adjusting for student characteristics 1# and differences in grading or difficulty 

among subsequent courses '%. 

 In Equation 1, the separate intercepts for prerequisite course and subsequent course 

appear as fixed effects, but they could also be modeled as random effects. Indeed, the data 
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are inherently clustered: attributes of courses do not vary across students within each 

course, and thus the observations within each course are unlikely to be independent, which 

violates standard regression assumptions. This modeling choice assumes that the random 

effects are uncorrelated with all other explanatory variables, an assumption which holds if 

strong ignorability holds (see below; Carrell & West, 2010). Importantly, this approach 

also allows us to account for student-level and course-level variation when estimating 

course-level regression coefficients. Specifically, in fixed-effects models it would not be 

admissable to include course-level indicators along with course-level predictors (e.g., 

Gelman & Hill, 2007, p. 246). Since the present study is concerned with estimating the 

effect of course-level variables on student outcomes, a multi-level approach is more 

appropriate. That being said, random-effects models do rely on additional assumptions that 

may be untenable, including that the random effects are normally distributed and that there 

are sufficient observations at each level for the asymptotic theory for the test statistics to 

be justified, but given the size of our sample and the number of group-level effects to be 

estimated, these assumptions should hold. 

 In addition to explicitly modeling course section effects as fixed or random, a third 

way to model this relationship is to use ordinary least squares (OLS) with cluster-robust 

standard errors to account for the clustered structure of the data (e.g., Primo, Jacobsmeier, 

& Milyo, 2007; Cheah, 2009). This approach has the benefit of relying on fewer 

assumptions but would not give separate estimates for the individual courses. In the present 

study this is not an issue, since the objective is not to examine the impact of individual 

teachers on student outcomes. 
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Potential outcomes and propensity scores  

Assignment of students to courses is very rarely random. In K-12 education, for 

example, student assignment to classes can be influenced by student tracking, by parental 

requests for certain teachers, or by an effort on the part of administrators to separate 

students with behavioral problems or ensure a certain teacher gets certain students. In 

higher education, students register for courses on the basis of many factors including 

scheduling considerations and the reputation of the professor. Because students are not 

randomly assigned to specific pre-requisite courses and instead self-select into them, any 

variable that could have influenced both their choice of initial course and their performance 

in the subsequent course could lead to a spurious treatment effect, a pervasive issue in 

observational research known as selection bias (see Rothstein, 2010 for a discussion of this 

problem in value-added modeling). Because treatment subjects may differ systematically 

from control subjects at the outset, the causal effect of treatment cannot be estimated simply 

by comparing outcomes between groups.  

Modern approaches to estimating causal effects from observational studies depend 

heavily on the potential outcomes framework (Rubin, 1974; 2005). Within this framework, 

an individual causal effect is defined as the difference in potential outcomes for a given 

subject (i.e., the difference between the subject’s outcome if he or she had received 

treatment and the subject’s outcome if he or she had not received treatment). For example, 

let Yi represent the outcome of interest for student i (e.g., grade earned in the subsequent 

course), and let Ti be a binary variable indicating the treatment condition of student i (1 = 

high retrieval practice in prerequisite course, 0 = low retrieval practice in prerequisite 

course). Writing the outcome as a function of treatment, we can see that if student i were 

assigned to treatment, the outcome would be 2#(3# 	= 	1); if instead student i had been 

assigned to control, the outcome would be 2#(3# 	= 	0). Thus, with a binary treatment 
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variable, each subject has two potential outcomes, and the difference between these 

outcomes is the individual-level causal effect of treatment, 2#(1) 	−	2#(0). But because a 

given individual can only be assigned to either the treatment condition or the control 

condition (but not both), we can only ever observe a single potential outcome per subject 

(the other remains a hypothetical, counterfactual outcome). The fact that the universe only 

allows us to observe a single potential outcome per subject is known as the “fundamental 

problem of causal inference” (Holland, 1986). 

The average treatment effect (ATE) across all subjects is our quantity of interest. It 

is obtained by averaging all individual-level causal effects, which can be written  

738 = E[2#(1) 	− 2#(0)] = 	E[2#(1)]	− 	E[2#(0)] (2) 

If treatment is randomly assigned, those subjects who are assigned to treatment represent 

a random subset of the entire sample (those assigned to control represent a random sample 

as well). We do not observe every subject’s potential outcome under treatment 2#(1), but 

we do observe them for the random subset assigned to treatment. Likewise, we do not 

observe every subject’s potential outcome under control 2#(0), but we do observe them for 

the random subset assigned to control. Therefore, the expected potential outcome under 

treatment, for the treatment group is the same as the expected potential outcome under 

treatment for the entire sample (and equivalently for the control condition): 	

E[2#(1)|	3# = 1] = E[2#(1)]  

E[2#(0)|	3# = 0] = E[2#(0)] (3) 

Notice that these equalities imply that treatment assignment is independent of 

potential outcomes, 2(1), 2(0) ⊥ 3. Importantly, the quantities on the left-hand side of 

Equation 3 can be estimated based on observable data. Thus, under random assignment, an 

unbiased estimate of the ATE can be obtained by computing the mean difference in 

outcome between subjects in the treatment group and subjects in the control group, 
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																	738A = E[2#(1)|	3# = 1] − E[2#(0)|	3# = 0]	 	

																														=
1
∑3#

C2#3# −
1

∑(1 − 3#)
C2#(1 − 3#) 	

	= 2DE − 2DF (4) 

where 2DE represents the mean outcome in the treatment group and 2DF  represents the mean 

outcome in the control group. Thus, under random assignment, standard statistical methods 

such as t tests are appropriate for detecting causal effects and regression coefficients for 

treatment condition can be given a causal interpretation. 

If treatment is not randomly assigned to subjects, then treatment assignment is not 

necessarily independent of potential outcomes. Because E[2#(1)|	3# = 1] ≠ E[2#(1)]	, the 

ATE cannot be estimated as shown above (under randomization). The best way forward in 

the absence of random assignment is to identify and measure all possible factors that could 

confound the relationship between treatment receipt and outcome and then estimate causal 

effects by comparing treated and untreated subjects conditional on the measured 

confounders. If all confounding pre-treatment covariates have been measured in I, then 

potential outcomes are conditionally independent of treatment given I, 

[2(1), 2(0)] ⊥ 3|I (5) 

If the conditional independence in Equation 5 holds, and there are some treated and 

untreated subjects in each subgroup defined by I, then we have satisfied the so-called 

strong ignorability (or unconfoundedness) assumptions and can proceed as to estimate 

causal effects as we would under true random assignment (Rosenbaum & Rubin, 1983). 

Indeed, this is the rationale for using techniques such as ANCOVA to adjust for covariates 

when estimating the effect of interest.  

Though regression adjustment has long been the primary research tool used to 

“control for” potentially confounding factors in an effort to recover unbiased estimates of 
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treatment effects, this traditional approach has several shortcomings. Extrapolation beyond 

observed data is common in regression approaches and can be difficult to detect (e.g., 

hidden within interactions among variables). Such extrapolations serve to increase the 

sensitivity to the specific regression model specification (e.g., choice of functional form, 

interactions, higher-order terms), leading to large variations in effect estimates (Ho, Imai, 

King, & Stuart, 2007). Crucially, this sensitivity to model specification comes with great 

potential for misuse. If an initially specified model produces a non-significant effect, the 

temptation to alter the specification (e.g., by adding, removing, or interacting covariates) 

will be high; through such tinkering, “significant” effects can often be produced that are in 

line with one’s favored hypothesis by capitalizing on chance alone.  As will be discussed 

below, propensity-score methods can be used in conjunction with any regression model to 

make causal effect estimates more accurate and far less model-dependent by improving 

covariate balance between comparison groups (e.g., treatment and control). 

A propensity score is an individual’s predicted probability of receiving the 

“treatment” (i.e., the dependent variable of interest, whether observational or experimental) 

based on that individual’s background covariates and other relevant characteristics. 

Typically, propensity scores are computed by measuring all covariates thought to influence 

both the treatment and the outcome, regressing the treatment indicator on those covariates 

in a logistic regression, and then using the fitted model to predict the probability of 

treatment receipt for each subject. This predicted probability of treatment receipt given a 

set of covariates is called a propensity score, denoted K(L). Notice that a propensity score 

model does not involve the outcome data and is used for purely predictive purposes to 

model the treatment-assignment process.  

The propensity score is an example of a balancing score—a univariate summary 

that preserves all information about the relationship between treatment and covariates—
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representing subjects’ probability of being treated (Rosenbaum & Rubin, 1983). 

Conditioning on the estimating propensity score is done to remove observed systematic 

differences between treated and control subjects. Specifically, within subgroups defined by 

the propensity score, treatment status is independent of baseline covariates:  

I ⊥ 3	|	K(I) (6) 

Given that all confounding variables have been measured and included in the 

propensity score model, then adjusting for differences in propensity score between 

treatment and control conditions removes all bias in the treatment effect estimate associated 

with differences in covariates. Importantly, if strong ignorability holds given I, then it also 

holds given only K(I). Thus, adjusting for the one-dimensional propensity score is 

sufficient for unbiased estimates of causal effects.  

For example, treatment could be defined as taking a prerequisite course high in 

retrieval practice (3 = 1) versus a prerequisite course low in retrieval practice (3 = 0). If 

a propensity score is computed based on all covariates that predict whether a student would 

take a high retrieval practice course, then students in the treatment condition can be 

compared to students in the control condition with similar propensity scores. In groups of 

subjects having similar propensity to receive treatment, differences between treated and 

control subjects are most plausibly attributable to the treatment; and within such groups 

average effect of treatment (e.g., mean performance in subsequent course) can be 

estimated. Several approaches to forming such groups exist, the simplest and coarsest of 

which is stratifying the distribution of propensity scores by quantile and estimating 

treatment effects only within groups formed by those quantiles. Partitioning the distribution 

of propensity scores by quintiles, for example, and then comparing treatment and control 

subjects within these five groups (and pooling the estimates) removes around 90% of the 

bias from observational studies (Cochran, 1968). Another simple approach is one-to-one 
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matching: yoking each subject in the treatment group to the subject in the control group 

with the most similar propensity score. In this situation, a t test can be used to test the null 

hypothesis that the causal effect is zero (Thoemmes & Kim, 2011). More sophisticated 

approaches such as one-to-many matching and inverse-propensity weighting achieve better 

results and are often used in practice. 

The result of propensity score matching or weighting is to make the covariate 

distributions for the treatment and control groups resemble each other as closely as 

possible: the result is less model dependence, less potential for bias, and lower variance 

(Ho, Imai, King, & Stuart, 2007; 2011). There are many approaches to achieving covariate 

balance through propensity scores: I will use inverse-propensity-score weighting (IPW) 

together with regression analyses to perform this analysis (Lunceford & Davidian, 2004; 

Schafer & Kang, 2008). Inverse-propensity weighting—or weighting by the inverse 

probability of treatment—results in an adjusted population in which baseline covariates are 

independent of treatment condition (Austin & Stuart, 2015). Weighting allows for finer-

grain adjustments than does stratification or one-to-one matching and it has the benefit of 

retaining observations that are in non-overlapping regions of both conditions’ propensity-

score distributions and assigning them a correspondingly low weight. However, extreme 

weights (in either direction) must be monitored because they can increase the variability of 

treatment-effect estimates (Kang & Schafer, 2008). Where appropriate, weights will be 

very liberally trimmed (to the 0.001st and 99.9th percentiles); trimming weights in this 

manner is common practice and is known to improve performance of inverse-propensity 

score weighting in cases where the propensity-score model produces extreme weights (e.g., 

Lee, Lessler, & Stuart).  

For each analysis planned, I first generate propensity scores and check to ensure 

balance among the covariates (by comparing adjusted covariate distributions using 
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standardized mean differences, Kolmogorov-Smirnov statistics, and variance ratios). I then 

use inverse-propensity weighted regressions (weighted least-squares) to estimate the ATE. 

Combining a weighted regression model of the outcome with a propensity-score model of 

treatment exposure results in approximately unbiased effect estimation if either the 

exposure or the outcome model is correct, a beneficial property known as double 

robustness (Funk et al., 2011). 

 In inverse-propensity weighting (IPW), to estimate the ATE each subject is 

assigned a weight equal to the inverse of the probability of receiving the treatment that the 

subject actually received: subjects who were actually treated receive a weight of 1/K(1), 

while subjects who were actually not treated receive a weight of 1/(1	 − 	K(3)). A 

weighted regression minimizes the weighted sum of squares: each treatment observation 

counts as treatment to the degree to which it exhibited propensity for not being treated and 

each control observation counts as control to the degree to which it exhibited propensity 

for being treated (Imbens, 2000). By way of intuition, individuals with low propensity for 

treatment (based on background covariates) but who actually receive treatment are a rare 

and valuable source of counterfactual information: thus, they receive greater weight. 

Individuals with high propensity for treatment who nevertheless do not receive treatment 

are similarly valuable and also receive greater weight.  

Though the techniques for doing so are relatively new, there is precedent for using 

propensity score matching and weighting methods with multilevel data (e.g., Arpino & 

Mealli, 2011; Li, Zaslavsky, & Landrum, 2013). Importantly, it has been shown that so 

long as the clustered nature of the data is accounted for in either the non-parametric 

propensity-score model or the parametric outcome model, the bias owing to such 

dependencies in the data can be effectively removed (e.g., Li, Zaslavsky, & Landrum, 

2013). 
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EXPLORATORY LASSO REGULARIZED REGRESSION 

In addition to estimating the causal effect of high retrieval practice in prerequisite 

courses on students’ subsequent-course performance, it was also of interest to explore 

whether other features of prerequisite courses (specifically those associated with retrieval 

practice and in-class active learning) were predictive of successes in the subsequent course, 

and if so, which ones and to what extent. To achieve this, average subsequent-course grades 

were computed for each prerequisite course; these averages were then regressed on the full 

set of course-level predictor variables. Because there were over 40 predictor variables, 

lasso regression was used to improve model interpretability and prediction, but ordinary 

least-squares (OLS) results are provided for comparison.  

The lasso was devised as a variable-selection and regularization technique in 

machine learning (Tibshirani, 1996; 2011). Regularization techniques are ways of 

constraining models by penalizing them as they become more complex (e.g., as the number 

of parameters grows) in order to produce more parsimonious solutions (i.e., one that retains 

only the most predictive variables), which is especially important as the number of 

predictors grows large. The lasso’s objective function is the same as in OLS regression but 

with an added criterion: in addition to minimizing the sum of the squared deviations 

between observed and predicted values, the regression solution must also minimize the 

sum of the absolute values of the parameter estimates. Specifically, given a sample of O 

observations, a set of K	predictor variables, and a single outcome measure P, the objective 

function of the lasso is given as 

min
T
U
1
O
C(P# − 1#*+)V
W

#XY

Z 		[\]^,_`	`a		Cb+cb

$

cXY

≤ e, (7)	
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where e is a regularization parameter that controls the amount of penalty and is usually 

chosen through cross-validation. 

The more non-zero coefficients a model has, the more variance it can explain in the 

observed values (i.e., lower sum-of-squares), but the larger the sum of absolute 

coefficients, thus putting the two desiderata into tension. The optimal lasso solution will 

thus be a compromise, yielding accurate parameter estimates for a subset of highly 

predictive variables while shrinking smaller coefficients to zero (Helwig, 2017). Unlike its 

conceptual cousin, the stepwise or hierarchical regression, lasso regression adds 

regularization to combat overfitting (instead of optimizing gV or related fit criteria, a 

procedure which capitalizes on sampling error; Thompson, 1995), thus yielding models 

that tend to generalize better (i.e., perform well on new data; Yarkoni & Westfall, 2017). 
  



 156 

Chapter Seven: Analysis 

DATA 

The dataset consists of 13,332 first-time-in-college students at the University of 

Texas at Austin (i.e., no students transferring from other colleges, no readmitted students) 

for whom I have demographic information who took at least one course sequence (i.e., a 

sequence of two courses for which the first course is a prerequisite for the second course) 

for which I have syllabus data. Syllabus data were collected for all high-enrollment 

undergraduate courses at UT Austin from Fall 2011 to Spring 2016 (see Part I). Because 

syllabi were coded on the basis of total enrollment, the dataset is limited to a subset of all 

possible prerequisite- and subsequent-course pairs for which I have syllabus information 

for the prerequisite course (for a total of twelve different prerequisite courses). All possible 

course sequences in the syllabus dataset are shown in Figure 38, along with the total 

number of unique course sections of each (given in parentheses).  
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Figure 38 All prerequisite–subsequent course sequences in the syllabus dataset; credit 
for first course listed is prerequisite for the second in the official course 
catalog. The number of unique syllabi for each course is given in 
parentheses. 

 

Across these twelve prerequisite courses, I have covariate and outcome data for the 

students described above—those who took at least one syllabus-coded prerequisite course 

and then continued on to complete a course sequence by taking one of the subsequent 

courses given in Figure 38. The total number per prerequisite course varies by prerequisite 
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course as a function of the number of prerequisite courses for which I have coded syllabus 

data. However, given that a student took one of these prerequisite courses, outcome data 

was used for any subsequent course the student took (i.e., not just those specific subsequent 

course sections for which I have syllabus data). See Results section for student totals by 

prerequisite course. Note that the majority of students in our dataset come from CH 301, 

ECO 304K, and GOV 310L.  

Clearance to use student data 

Student outcome data and covariate information were obtained from University 

registrar data. Use of such data for the purposes of this study was approved by the Internal 

Review Board at UT Austin (#2016070007), and the author of this document was a member 

of the approved research personnel covered thereby. Conditions of data use were agreed 

upon by the author and the Project 2021 Leadership team including Jane Huk, the leader 

of Research and Measurement, Executive Director Jamie Pennebaker, and COO Toni 

Wegner. Among the conditions agreed upon for clearance to use these data are that I keep 

specific courses and instructors anonymous and to present results in the aggregate, 

reporting across department, college, and course sequences that do not specifically identify 

specific prerequisite course sections. 

Student background variables 

The student data that were provided to me under terms described above included of 

measures of previous achievement (standardized grade in prerequisite course, SAT score 

equivalent, high school GPA rank, number of college credits earned in high school), 

demographic information (age, sex, race/ethnicity), socioeconomic status (mother’s 

highest level of education), and several other relevant student variables (semester course 
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load, classification, college major). See Table 7 for variable scales, names, and 

descriptions. These data play a crucial role in the present study because they form the basis 

on which treatment and control groups are balanced. By achieving balance on measures of 

previous (high school) achievement, previous (high school) academic rigor, socio-

economic status, demographic information, current (college) achievement, current 

(college) academic rigor (e.g., semester course load and current major), and year in college, 

I make the case that all plausible confounding factors affecting both the treatment-

assignment mechanism (i.e., student selection of courses) and students’ subsequent-course 

performance are as good as randomly assigned between treatment and control groups. See 

Results for formal tests of covariate balance for each of these variables before and after 

propensity-score weighting. 

One caveat to be mentioned is that it is rarely advisable to condition on post-

treatment variables (e.g., to control for them in a regression model or otherwise use them 

to equate groups) because they are definitionally measured after, and therefore potentially 

affected by, the treatment, causing treatment-effect estimates to be biased (Rosenbaum, 

1984). In the present study, the treatment is an attribute of the prerequisite course, so any 

subsequent-course attributes are therefore post-treatment. However, several subsequent-

course variables could be potential confounds, ranging from general course-specific effects 

to the number of credit hours undertaken during the subsequent-course semester. When the 

post-treatment variable is a surrogate for an unobserved pre-treatment variable, or when 

the treatment could not plausibly affect the post-treatment variable, the bias will be 

negligible (Rosenbaum, 1984). Proceeding with due caution, models will be fit and results 

will be reported with and without post-treatment covariates where appropriate. 
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Table 7 Variable names, scales, and descriptions 

 

Variable Name Scale and description   
Outcome measures    
  Grade in subsequent course class_zscore.y Numeric: Standardized GPA (4.0 scale to z-score within each course) in subsequent course 

  Mean subsequence-course grade per 
prerequisite course meanz.y Numeric: Mean standardized GPA (same as above, averaged) in subsequent course   

       
Previous achievement-related variables    
  SAT score equivalent SAT_equivalent Numeric: SAT composite score (or institutionally equated ACT composite score): 800-1600 
  High school GPA percentile hspct2 Numeric: High school GPA percentile in graduating class 
  Transfer credit from HS coursework transferredhours Numeric: Total number of credits transferred to UT from high school 
       
Demographics    
  Age age Numeric: Age in years at start of prerequisite semester 
  Gender sex Categorical: Indicator variable for female 

  Race or Ethnicity derivation Categorical: Indicator variables for Asian, Black, Hispanic (any), Hawaiian/Pacific Islander, Native 
American, Unknown, White, 2+ (excluding Black and Hispanic), 2+ (including 1+ Black) 

  
  University classification CLASSIFICATION Categorical: Indicator variables for Freshman, Sophomore, Junior, Senior, and Super-Senior 

       
Socioeconomic status     

  

   

Mother’s level of education 
Father’s level of education 

motheredlevel 
fatheredlevel 

Categorical: Indicator variables for No high school, Some high school, High school diploma or 
equivalent, Some college, Associate’s degree, Bachelor’s or four-year degree, Graduate or professional 
degree, and Unknown  

       
Current achievement-related variables     
  Grade in prerequisite course class_zscore.x Numeric: Standardized GPA in prerequisite course 
  Semester course load (credit hours taken)  HRS_UNDERTAKEN.y Numeric: Total number of credit hours undertaken during subsequent-course semester 
  College major admitschool Categorical: Indicator variables for each college major (12 colleges) 
    
Course/instructor effects   
 Prerequisite course section unique_course.x Categorical: Indicators for each unique course section (209 sections) 
 Subsequent course section unique_course.y Categorical: Indicators for each subsequent course section (429 sections) 
 Instructor instructor_first Categorical: Indicators for each instructor (56 instructors) 
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Covariate balance assessment 

To assess whether covariate balance between treatment and control groups has been 

achieved after propensity-score adjustment, distributions and summary statistics are 

computed for each covariate and compared between conditions. Graphical depictions of 

the distribution of each covariate in both conditions are provided both before and after 

adjustment. Thus, several lines of evidence will converge on a determination of covariate 

balance. The specific techniques to be used are discussed in more detail below. 

Standardized mean differences 

The difference in covariate means between treatment and control groups divided 

by the pooled standard deviation is a traditional indicator of balance appropriate when 

computing the ATE (Austin, 2009). Intuitively, there should be no mean differences 

between treatment and control conditions for any covariates when balanced. Commonly, a 

threshold of 0.1 is used for standardized mean differences in the absence of hypothesis 

tests. Each covariate will be examined with respect to this threshold. 

Logistic regression of treatment on covariates 

One possible way to formally assess covariate balance in a hypothesis-testing 

framework is to conduct a t test between treatment and control groups for each covariate. 

Another way to approach this question is to fit a logistic regression predicting treatment 

condition from all covariates. If covariates are balanced between conditions, then they 

should not be significantly predictive of treatment status. Accordingly, logistic regressions 

of treatment on each covariate are conducted before and after inverse propensity-score 
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weighting. Note that this procedure is very conservative using a nominal 0.05 significance 

level, but this is not necessarily problematic from the standpoint of assessing covariate 

balance. 

Kolmogorov–Smirnov (K–S) test statistics 

The K–S statistic for a continuous variable is a measure of the largest distance 

between the empirical cumulative distribution function for that variable between two 

groups. Effectively, it measures the similarity of two distributions, with a value of 0 

representing complete overlap (i.e., identical distributions) and a value of 1 indicating no 

overlap. Thus, in the present study, K–S values close to zero are indicative of balanced 

covariate distributions between treatment and control.  

Variance ratios 

Recent research recommends that variance ratios be used to further examine 

distributional similarity between conditions for continuous variables (Austin, 2009; Imai, 

King, & Stuart, 2008). When variances are similar between conditions, the variance ratio 

will be close to 1. For balanced groups, a rule of thumb is that the variance ratio should be 

between 0.5 and 2 (e.g., Rubin, 2001; Stuart, 2010).  

Treatment variables 

The independent variable of principal interest in the present study is the quantity of graded 

retrieval-practice opportunities offered in the prerequisite course (total number of graded 

quizzes and exams including the final). In order to use propensity scores to achieve 

covariate balance, this course total was dichotomized to create a binary treatment variable. 

Specifically, treatment and control conditions were created using a median split of the 
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number of graded retrieval practice (as indicated in the prerequisite-course syllabus rubric), 

within each course sequence. That is, the median number of graded retrieval practice 

opportunities was determined for each prerequisite course: students taking prerequisite 

courses at the median or higher were assigned to treatment (high retrieval practice 

condition), while students taking courses below the median were assigned to control (low 

retrieval practice condition). This method of operationalizing treatment was decided on a 

priori, but a mean split was used to assess robustness. Note that these cutpoints are arbitrary 

and somewhat artificial; however, they are necessary when dichotomizing a continuous 

variable to ensure covariate balance. See Table 9 and Figures 39 and 44 for descriptive 

statistics and the distribution of graded retrieval practice opportunities by course 

dichotomized using the median and the mean, respectively. Notice that the mean split may 

support a more appropriate division between naturally occurring high and low retrieval-

practice courses: the distributions produced by such a split are more distinctly separated. 

Outcome variables 

Two outcome measures of interest were examined in the present study. Of primary 

interest was the grade (4.0 scale, standardized in each course) earned in the subsequent 

course of a given course sequence. This was used as the dependent variable in the 

subsequent-course analysis to assess the impact of high retrieval practice. The second 

outcome measure was the average subsequent-course grade earned by students for each 

section of the prerequisite course. This represents the average performance of a prerequisite 

course section’s students in their subsequent course and was used as the dependent variable 

in the exploratory lasso regression. Ideally a continuous measure of grades would be used, 

but the university does not keep such records. See Table 7 for all variables and descriptions. 
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Additional syllabus variables and outcome measures for lasso regression 

Finally, all relevant prerequisite-course variables derived from the syllabus analysis 

were used in an exploratory lasso regression predicting mean subsequent-course 

performance in order to select the subset of these variables that are most associated with 

performance in the subsequent course. This data comprises all variables that appear in the 

correlation matrix presented in Appendix B and visualized in Figure 4, presented in Part I 

of the study. In addition, fixed effects of prerequisite-course instructor were included in 

both models to capture extraneous teacher effects beyond retrieval practice. 

MODELING 

Primary outcome analyses 

The three modeling approaches outlined above (fixed effects, random effects, and 

OLS with cluster-robust standard errors) are estimated and compared for each of the 

treatment operationalizations (i.e., median-split and mean-split). Models are fit both before 

and after inverse propensity-score weighting. All significance tests reported are adjusted 

for unequal variances using the Satterthwaite degrees of freedom corrections 

(Satterthwaite, 1946). 

All models are fit using R (R Core Team, 2018). Figures were made using the 

ggplot2 package (Wickham, 2016a) or were manually created. Data manipulation was 

carried out using base R functions along with helper functions from the dplyr (Wickham, 

Fancois, Henry, & Mueller, 2017) and tidyr (Wickham, 2016b) packages. Standard 

regression models are fit using R base functions. Mixed models are fit using the lme4 

package (Bates, Maechler, Bolker, & Walker, 2014). Lasso regression models are fit using 

the glmnet package (Friedman, Hastie, & Tibshirani, 2010). Cluster-robust standard errors 
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are computed using the clubSandwich package (Pustejovsky, 2017). Heteroskedasticity-

robust standard errors are computed using the sandwich package (Zeileis, 2004). Balance 

assessment diagnostics are provided in part by functions from the cobalt package (Griefer, 

2017). 

Fixed-effects model 

In the first model, each unique subsequent-course section is included as a fixed 

effect. As discussed above, one cannot include fixed effects for prerequisite courses 

because the treatment variable of interest occurs at this level. It is possible, however, to 

control for the specific prerequisite course instructor to capture variability due to otherwise 

unmeasured prerequisite-course attributes. The fixed-effects model is given below	 

"#$%&'()* = ,- + ,/0123%425%)* + ,67(0)* + ,8ℎ$:35;)* + ,<ℎ$=12>?%$)* 

																												+,@(A2)* + ,B72C)* + ,DE%ℎ5?F?%G)* + ,H7E7)* + ,I=J3$$?K?F3%?#5)* 

+,/-L3M#1)* + ,//"12&'()* + ,/6$NOP#3>)* + Q* + 2)*	 (8) 

Where the Q* represents individual prerequisite-instructor fixed-effects. The model is 

presented below in R syntax: 

J4("#$%&'(	~	0123%425% + 7(0 + ℎ$:35; + ℎ$=12>?%$ + (A2 + 72C
+ E%ℎ5?F?%G + 7E7 + =J3$$?K?F3%?#5 +L3M#1 + "12&'(
+ $NO$2VP#3> + "1212VW5$%1NF%#1 + $NO$2V72F%?#5,Y2?Aℎ%$
= W'Z_(0E) 

Note that treatment, sex, ethnicity, SES, classification, major, prerequisite department, 

prerequisite instructor, and subsequent course section are treated as categorical variables, 

while the remaining variables are treated as numeric. See Table 7 for variable scales and 

descriptions. 
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Mixed-effects model 

In the second modeling approach, random effects are included for each prerequisite 

and subsequent course section. This model is identical to the fixed-effects model shown 

above in every respect except that it does not include indicators for prerequisite instructor; 

instead, random effects are included for both prerequisite and subsequent course sections. 

Aside from this change, all covariates are the same for both models. Note that this is a 

crossed, rather than a nested, multilevel model. Specifically, for subject ? in prerequisite 

course " and subsequent course $, 

"#$%&'()*\ = ]--- + ]-/-0123%425%* + ]/--7(0)*\ + ]6--ℎ$:35;)*\ 

													+]8--ℎ$=12>?%$)*\ + ]<--(A2)*\ + ]@--72C)*\ + ]B--E%ℎ5?F?%G)*\ 

																									+]D--7E7)*\ + ]H--=J3$$?K?F3%?#5)*\ + ]I--L3M#1)*\ + ]̂ --"12&'()*\		 

+]_--$NOP#3>)*\ + N-*- + N--\ + 2)*\																																							 (9) 

Where N-*- and N--\  are individual prerequisite- and subsequent-course random effects 

(i.e., modeled as normally distributed with a mean of zero and variance abcdc
6  and abcce

6 , 

respectively). We obtain estimates of the variation between prerequisite courses, abcdc
6 , and 

between subsequent courses, abcce
6 , and well as residual variation af6. The proportion of 

observed variation attributable to specific prerequisite or subsequent courses can then be 

computed using the intraclass correlation coefficient (ICC). For example, the proportion of 

variation in the outcome attributable to specific prerequisite courses is calculated as 

follows: 

W==* =
abcdc
6

abcdc6 + abcce6 +	af6
(10)	
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This can also be interpreted as the correlation of student outcomes for any prerequisite 

course, regardless of the subsequent course. Similarly, the proportion of variation 

attributable to specific subsequent courses is calculated as follows: 

W==\ =
abcce
6

abcdc6 + abcce6 +	af6
(11)	

Likewise, this can be interpreted as the correlation of student outcomes for any subsequent 

course, regardless of the prerequisite course. Finally, the proportion of variation in the 

outcome due to both the prerequisite and the subsequent course is calculated as follows: 

W==*\ =
abcdc
6 + abcce

6

abcdc6 + abcce6 +	af6
(12)	

This can be interpreted as the correlation of student outcomes for students in the same 

prerequisite and subsequent course. 

This mixed-effects model with random effects for prerequisite and subsequent 

course section and inverse-propensity weights is presented below in R syntax appropriate 

for the lmer() function in the lme4 package, with weights (IPW_ATE, below) calculated as 

specified below in the section on propensity score modeling. Note that while this function 

uses restricted maximum likelihood estimation by default, restricted maximum likelihood 

and maximum likelihood estimation produce the same estimates for fixed effects, which 

are of primary interest, and given large samples like those in the present study, differences 

between random-effects estimates are negligible (e.g., Snijders & Bosker, 1999). 

J421("#$%&'(	~	0123%425% + 7(0 + ℎ$:35; + ℎ$=12>?%$ + (A2 + 72C
+ E%ℎ5?F?%G + 7E7 + =J3$$?K?F3%?#5 +L3M#1 + "12&'(
+ $NOP#3> + (1	|	"1272F%?#5) + (1	|	$NO72F%?#5),
Y2?Aℎ%$ = W'Z_(0E) 
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Regression with cluster-robust standard-errors 

Unlike the fixed- and random-effects models above, the third model does not 

explicitly estimate parameters for the unique effects of specific prerequisite- and 

subsequent-course sections. Instead, each unique prerequisite-subsequent course-section 

combination is treated as a unique cluster, and standard errors are computed that are robust 

to independence violations that arise from the clustered nature of these observations 

(Cameron & Miller, 2015). There are 1864 unique course-sequence clusters in the dataset 

with an average cluster size of 7.29 (7k = 21.67,L?5 = 1,L3C = 412). Aside from the 

way unique prerequisite and subsequent courses are treated, all covariates (those shown in 

Table 7) remain the same across models. The model is identical to the fixed-effects model 

presented above in Equation 9 except that it lacks instructor fixed-effects. The syntax is 

presented below with a wrapper function from the clubSandwich package that calculates 

the cluster-robust standard errors. As recommended, the CR2 variance estimator is used 

with Satterthwaite degrees of freedom (Pustejovsky & Tipton, 2014). 

F#2K_%2$%(	J4("#$%&'(	~	0123%425% + 7(0 + ℎ$:35; + ℎ$=12>?%$ + (A2
+ 72C + E%ℎ5?F?%G + 7E7 + =J3$$?K?F3%?#5 + L3M#1
+ "12&'( + $NO$2VP#3>, Y2?Aℎ%$ = W'Z_(0E),				pF#p
= ``=:2rr, FJN$%21
= ?5%213F%?#5("1212V72F%?#5, $NO$2V72F%?#5) 

Propensity-score model 

The propensity-score model is a logistic regression model in which all pre-

treatment covariates are used to predict treatment receipt as described above. The model is 

presented below in R syntax 

AJ4(0123%425%~7(0 + ℎ$:35; + ℎ$=12>?%$ + 72C + E%ℎ5?F?%G + 7E7
+ =J3$$?K?F3%?#5 +L3M#1, K34?JG = ``O?5#4?3Jrr) 
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All covariates are pre-treatment variables. Propensity scores are estimated from the fitted 

model by inputting specific covariate values for each student and getting their predicted 

probability as output. Propensity scores "(s) are then used to generate the weights W'Ẑ tu  

as follows: 

W'Ẑ tu = 0
1

"(s) +
(1 − 0)

1
1 − "(s)

(13)	

Weights are then normalized so that they sum to one within each condition (i.e., sum of 

weights for treated subjects is equal to one and the sum of weights for control subjects is 

equal to one). 

Secondary models 

For each of the three course sequences with the greatest number of students in the 

dataset, covariate balance is assessed, weights are calculated, models are fit, and treatment 

effects are estimated as described above within each course sequence. The three course 

sequences are CH 301–CH 302, ECO 304K–ECO 304L, and GOV 310L–GOV 312L. In 

addition to being large samples, these course sequences are extremely representative 

because many of them are required courses for popular majors at UT Austin. Perhaps most 

importantly, they allow 

Lasso regression for variable selection 

Lasso regression was performed by regressing the mean subsequent-course grade 

for each prerequisite course section on all 38 syllabus-derived variables related to course 

structure, requirements, and teaching practices as described above in order to find the 

subset of prerequisite course variables most predictive of subsequent-course success. A 10-

fold cross-validation was used to choose the regularization parameter λ, which governs the 
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amount of shrinkage, and the value of λ that minimized the MSE was chosen. However, 

there were slight variations in the optimal value of lambda upon repeatedly fitting the same 

model, so I repeated entire the process 1000 times. Specifically, 10-fold cross-validation 

was used to select the value of λ that resulted in the lowest MSE and parameter estimates 

were obtained. This process was repeated, each time generating new parameter estimates, 

resulting in a distribution of estimates for each non-zero parameter. Distributions of each 

parameter are reported, along with a single set of such parameter estimates. These results 

are compared to the OLS solution obtained with the same data. 
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Chapter Eight:  Results 

RESEARCH QUESTION 1 

Overall Causal Effect Estimates of High Graded Retrieval Practice (Median Split) 

The creation of a dichotomous treatment variable using a median split of total 

graded retrieval practice elements per course resulted in a sample of 8,517 students in the 

high retrieval-practice (treatment) condition and 4,815 students in the low retrieval-practice 

(control) condition (values greater than the median were assigned to treatment). Weighting 

the sample for propensity-score adjustment means that certain individuals are 

overrepresented (or underrepresented) by design, causing the effective sample size to 

decrease as weights get more extreme. The effective sample size is calculated as the ratio 

of the squared sum of the weights to the sum of the squared weights; in the present case, 

this was 8,273 students in the treatment condition and 4,018 in the control condition, for a 

total of 12,291. See Table 8 for treatment and control sample sizes resulting from median 

splits and mean splits used to operationalize treatment. See Table 9 for mean, median, and 

standard deviation of retrieval practice elements overall and for each prerequisite course. 

See Figure 39 for histograms of number of courses by number of retrieval practice 

opportunities for each prerequisite course, with colors indicating median-split treatment 

assignment.  
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Table 8 Sample size of high and low retrieval practice (RP) conditions by 
prerequisite course under different treatment operationalizations 

 

Table 9 Descriptive statistics for number of graded retrieval practice elements by 
prerequisite course 

Course Median  M SD  
        
ADV 318J 5 4.57 0.56 
AST 301 4 5.5 5.17 
CH 301 33 26.2 12.40 
CH 302 13 15.2 12.10 
CH 318M 4 3.93 0.26 
CH 320M 4 4 0 
CH 328M 4 4 0 
CS 303E 33 32.1 4 
ECO 304K 9 8.51 5.15 
GOV 310L 10 8.22 3.77 
GOV 312L 3 4.93 2.65 
PSY 301 5 12 9.38 
        

Overall 11 17.2 13.2 

Prerequisite 
course 

Median split   Mean split  Total Low RP High RP  Low RP High RP 
              

ADV 318J 162 0   65 97 162 
AST 301 340 186   452 74 526 
CH 301 3636 2615   2345 3906 6251 
CH 302 40 18   40 18 58 
CH 318M 149 0   11 138 149 
CH 320M 196 0   196 0 196 
CH 328M 68 0   68 0 68 
CS 303E 365 0   19 346 365 
ECO 304K 1469 1297   1352 1414 2766 
GOV 310L 1840 523   824 1539 2363 
GOV 312L 36 25   36 25 61 
PSY 301 216 151   216 151 367 
                

Total 8517 4815  5624 7708 13332 
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Figure 39 Distribution of graded retrieval practice opportunities by prerequisite course. 
Color indicates median-split treatment assignment. Note that vertical axis 
scales differ. 

Covariate balance assessment 

 Prior to adjustment via inverse-propensity weighting, several covariates were 

unbalanced between treatment and control conditions. Figure 40 depicts standardized mean 

differences for each variable (or each level for categorical variables) both before (red) and 

after (blue) adjusting with inverse propensity-score weights. Before weighting, age and 

first-year classification had a standardized mean difference in excess of the 0.1 threshold 
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and several more were very near the threshold.  For mean differences, variance ratios, and 

K–S statistics before and after adjustment, see Appendix C. 

Given covariate balance, the covariates in question should not predict treatment 

status. As an additional check, a logistic regression of treatment on covariates is performed 

before and after weighting (Table 10). It can be seen that, prior to adjustment, treatment 

and control conditions differ with respect to high school rank, age, classification, and 

certain levels of ethnicity and major. After adjustment, however, no systematic differences 

remain between conditions. 

To check that the propensity-score weighting is working as intended, distributions 

of the propensity score (or the logit propensity score) for treatment and control conditions 

are compared before and after weighting (Figure 41), showing the expected overlap after 

adjustment. In a similar fashion: distributions of each covariate are shown for each 

condition before and after adjustment. Densities are shown for continuous variables (Figure 

42) and histograms are shown for categorical variables (Figure 43). Altogether, there is 

ample evidence that covariate balance has been achieved. 
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Figure 40 Love plot depicting standardized mean differences (treatment minus control) 
before and after propensity score adjustment.  
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Table 10 Logistic regression coefficients predicting treatment status before and after 
propensity score adjustment  

Variable Unadjusted  Adjusted 
Estimate SE t p-value   Estimate SE t p-value  

Intercept 1.804 0.157 11.520 <.001 *** 0.492 0.168 2.937 0.003 ** 
SAT_equivalent 0.000 0.000 1.161 0.246   0.000 0.000 -0.494 0.621  
hspct2 0.088 0.040 2.187 0.029 *  -0.032 0.042 -0.758 0.448  
transferredhours 0.000 0.000 0.177 0.859   0.000 0.000 0.140 0.889  
age -0.082 0.007 -12.252 <.001 *** 0.003 0.007 0.450 0.653  
sexW -0.012 0.008 -1.377 0.169   -0.003 0.009 -0.335 0.737  
derivationAI -0.049 0.090 -0.546 0.585   0.005 0.096 0.050 0.960  
derivationA -0.007 0.024 -0.290 0.772   0.001 0.026 0.042 0.967  
derivationB2eH -0.069 0.059 -1.180 0.238   -0.026 0.064 -0.409 0.683  
derivationB -0.039 0.031 -1.235 0.217   0.009 0.033 0.274 0.784  
derivationF -0.050 0.037 -1.339 0.181   0.027 0.039 0.673 0.501  
derivationHPI -0.308 0.119 -2.580 0.010 **  -0.043 0.134 -0.318 0.751  
derivationH -0.017 0.025 -0.670 0.503   0.007 0.026 0.262 0.793  
derivationU 0.089 0.073 1.208 0.227   0.007 0.078 0.087 0.931  
derivationW -0.021 0.023 -0.895 0.371   0.003 0.025 0.119 0.905  
majorschool3 -0.021 0.034 -0.628 0.530   0.009 0.036 0.245 0.807  
majorschool4 -0.065 0.016 -4.207 0.000 *** 0.007 0.017 0.426 0.670  
majorschool5 0.048 0.036 1.315 0.189   0.027 0.038 0.706 0.480  
majorschool9 -0.106 0.115 -0.922 0.356   -0.041 0.127 -0.323 0.747  
majorschoolC -0.096 0.024 -4.084 0.000 *** 0.000 0.025 -0.008 0.994  
majorschoolE -0.012 0.013 -0.924 0.355   0.006 0.014 0.421 0.674  
majorschoolJ -0.107 0.040 -2.704 0.007 **  0.023 0.042 0.559 0.576  
majorschoolL 0.028 0.016 1.734 0.083 .  0.001 0.017 0.043 0.966  
majorschoolN -0.031 0.055 -0.558 0.577   0.013 0.058 0.231 0.818  
majorschoolS -0.171 0.061 -2.799 0.005 **  0.008 0.065 0.122 0.903  
majorschoolU -0.030 0.016 -1.922 0.055 .  0.003 0.017 0.164 0.870  
motheredlevel1 0.008 0.035 0.227 0.820   -0.006 0.037 -0.154 0.877  
motheredlevel2 0.032 0.031 1.002 0.316   -0.006 0.033 -0.189 0.850  
motheredlevel3 0.028 0.032 0.863 0.388   -0.001 0.034 -0.031 0.975  
motheredlevel4 0.043 0.031 1.372 0.170   -0.009 0.033 -0.286 0.775  
motheredlevel5 0.045 0.032 1.414 0.157   -0.008 0.034 -0.250 0.803  
motheredlevel6 0.048 0.034 1.402 0.161   0.004 0.036 0.124 0.902  
motheredlevelU 0.073 0.046 1.598 0.110   -0.025 0.048 -0.514 0.607  
fatheredlevel1 -0.026 0.036 -0.721 0.471   0.002 0.038 0.060 0.952  
fatheredlevel2 -0.002 0.032 -0.070 0.944   0.005 0.034 0.137 0.891  
fatheredlevel3 0.001 0.033 0.040 0.968   0.008 0.035 0.240 0.810  
fatheredlevel4 -0.012 0.032 -0.364 0.716   -0.002 0.034 -0.055 0.956  
fatheredlevel5 0.004 0.032 0.139 0.889   0.003 0.034 0.102 0.918  
fatheredlevel6 0.020 0.037 0.544 0.586   -0.005 0.039 -0.122 0.903  
fatheredlevelU -0.038 0.044 -0.873 0.383   0.015 0.046 0.323 0.746  
CLASSIFICATION2 -0.066 0.011 -5.920 0.000 *** 0.000 0.012 -0.036 0.971  
CLASSIFICATION3 -0.127 0.020 -6.356 0.000 *** 0.007 0.021 0.333 0.739  
CLASSIFICATION4 -0.047 0.036 -1.299 0.194     0.042 0.038 1.121 0.262   
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Figure 41 Distribution of propensity scores (logit scale) both before balancing (top 
panel) and after balancing (bottom panel) 
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Figure 42 Distributions of continuous covariates before balancing (top panel) and after 
balancing (bottom panel) 
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Figure 43 Distributions of categorical covariates before balancing (top panel) and after 
balancing (bottom panel) 
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Fixed-effects model 

 Results are reported for both the unweighted full fixed-effects model (i.e., 

including main effects of all covariates) and the inverse-propensity weighted full fixed-

effects model as described in the Analysis section above (see Table 11 for a summary of 

treatment-effect estimates across all models). The unweighted average treatment effect 

estimate for this model was positive and significant, (0E = 0.0687, 7E = 0.0252, % =

2.732, " = 0.006	 The inverse-propensity weighted average treatment effect estimate was 

positive, similar in magnitude, and significant, (0E = 0.0603, 7E = 0.0246, % =

2.448, " = .014.	Thus, in this model the advantage for high retrieval-practice remained 

significant after covariate balance was achieved. Students in high retrieval-practice 

prerequisite courses were found to perform 0.06 standard deviations better in their 

subsequent course, all else being equal. Full regression output for this model is contained 

in Appendix D. 

Random-effects model 

 Results are reported for both the unweighted full random-effects model (i.e., 

including main effects of all covariates) and the inverse-propensity weighted full random-

effects model as described in the Analysis section above. The unweighted average 

treatment effect for this model was positive and significant, (0E = 0.0569,7E =

0.0319, % = 1.786, " = .045. The average treatment-effect estimate for the inverse-

propensity weighted model was positive, larger in magnitude, and significant, (0E =

0.0665,7E = 0.0296, % = 2.247, " = .027. Thus, modeling the relationship with random 

effects for prerequisite and subsequent courses produced ATE estimates that were similar 
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in magnitude and provided similar evidence of a treatment effect. Full regression output 

for this model is contained in Appendix D. 

Cluster-robust standard errors model 

 Results are reported for both the unweighted full cluster-robust standard errors 

model and the inverse-propensity weighted full cluster-robust standard errors model as 

described in the Analysis section above. The unweighted average treatment effect for this 

model was positive but only marginally significant, (0E = 0.0349, 7E = 0.0179, " =

0.056. The average treatment-effect estimate for the inverse-propensity weighted model 

was positive and similar in magnitude but only marginally significant, (0E =

0.0346,7E = 0.0184," = 0.062. Notably, models using cluster-robust standard errors 

but not explicitly estimating individual course effects produced smaller ATE estimates than 

either of the other modeling approaches. Full regression output for these models is 

contained in Appendix D. 
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Table 11 Summary of average treatment effects estimates across all models and 
treatment operationalizations both before (left) and after (right) propensity-
score adjustment 

  Treatment Model Unadjusted   Adjusted 
b (ATE) SE    b (ATE) SE 

Overall                   
  

Median 
Fixed effects 0.069 ** 0.025   0.060 * 0.025 

  Random effects 0.057 * 0.032   0.067 * 0.030 
  Cluster-robust SE 0.036 . 0.018   0.035 . 0.019 

                    
  

Mean 
Fixed effects 0.069 * 0.029   0.067 * 0.029 

  Random effects 0.056 . 0.029   0.057 . 0.029 
  Cluster-robust SE 0.019   0.017   0.018   0.017 
                    

Chemistry                 
  

Median 
Fixed effects 0.091 ** 0.031   0.071 * 0.031 

  Random effects 0.156 . 0.103   0.151   0.104 
  Cluster-robust SE 0.062 * 0.028   0.063 * 0.028 

                    
  

Mean 
Fixed effects 0.123 *** 0.035   0.100 ** 0.034 

  Random effects 0.263 ** 0.091   0.241 ** 0.086 
  Cluster-robust SE 0.057 * 0.028   0.055 . 0.029 
                    

Economics                 
  

Median 
Fixed effects 0.074   0.064   0.086   0.064 

  Random effects 0.083 . 0.045   0.082 . 0.044 
  Cluster-robust SE 0.048   0.037   0.047   0.037 

                    
  

Mean 
Fixed effects 0.159 . 0.094   0.159 . 0.093 

  Random effects 0.101 * 0.043   0.103 * 0.045 
  Cluster-robust SE 0.070 . 0.038   0.067 . 0.038 
                    

Government                 
  

Median 
Fixed effects 0.044   0.051   0.025   0.046 

  Random effects -0.004   0.059   -0.013   0.053 
  Cluster-robust SE -0.055   0.037   -0.072   0.043 

                    
  

Mean 
Fixed effects -0.044   0.065   -0.026   0.061 

  Random effects -0.057   0.047   -0.051   0.047 
  Cluster-robust SE -0.023   0.044   -0.034   0.047 
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Overall Causal Effect Estimates of High Graded Retrieval Practice (Mean Split) 

Creation of a dichotomous treatment variable using a mean split of total graded 

retrieval practice elements per course resulted in a sample of 7708 students in the high 

retrieval-practice (treatment) condition and 5624 students in the low retrieval-practice 

(control) condition (values greater than the mean were labeled treatment). The effective 

sample size, after adjusting for covariates, was 7596 students in the treatment condition 

and 5489 in the control condition. See Table 8 for treatment and control sample sizes 

resulting from median splits and mean splits used to operationalize treatment. See Table 9 

for mean, median, and standard deviation of retrieval practice elements overall and for each 

prerequisite course. See Figure 44 for histograms of number of courses by number of 

retrieval practice opportunities for each prerequisite course, with colors indicating mean-

split treatment assignment. Compared to the median split, the mean-split treatment 

assignment appears to do a better job of capturing naturally occurring clusters of high and 

low retrieval practice courses. Notice, for example, the distinct separation of treatment and 

control course distributions with respect to treatment assignment for prerequisite courses 

CH 301 and GOV 310L. 
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Figure 44 Distribution of graded retrieval practice opportunities by prerequisite course. 
Color indicates mean-split treatment assignment. Note that vertical axis 
scales differ. 

Covariate balance assessment 

 Prior to adjustment with inverse-propensity weighting, several covariates were 

unbalanced between treatment and control conditions. Figure 45 depicts standardized mean 

differences for each variable (or each level for categorical variables) both before (red) and 

after (blue) adjusting with inverse propensity-score weights. Before weighting, age had a 

standardized mean difference in excess of the 0.1 threshold, and variables for SAT, high 

school rank, high school transfer credits, and certain indicators for ethnicity and major were 
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in excess of 0.05. Furthermore, adjusted variance ratios are all very close to one and 

adjusted K–S statistics are all close to zero. For mean differences, variance ratios, and K–

S statistics before and after adjustment, see Appendix C.  

Given covariate balance, the covariates in question should not predict treatment 

status. As an additional check, a logistic regression of treatment on covariates is performed 

before and after weighting (Table 12). It can be seen that, prior to adjustment, treatment 

and control conditions differ with respect to high school transfer credits, age, classification, 

mother’s education level, and certain levels of ethnicity and major. After adjustment, 

however, no systematic differences remain between conditions. 

To check that the propensity-score weighting has worked as intended, distributions 

of the propensity score (or the logit propensity score) for treatment and control conditions 

are compared before and after weighting (Figure 46), showing the expected overlap after 

adjustment. In a similar fashion: distributions of each covariate are shown for each 

condition before and after adjustment. Densities are shown for continuous variables (Figure 

47) and histograms are shown for categorical variables (Figure 48). Altogether, there is 

ample evidence that covariate balance has been achieved. 
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Figure 45 Love plot depicting standardized mean differences (treatment minus control) 
before and after propensity score adjustment 
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Table 12 Logistic regression coefficients predicting treatment status before and after 
propensity score adjustment  

Variable Unadjusted   Adjusted 
Estimate SE t p-value     Estimate SE t p-value   

Intercept 1.127 0.164 6.881 0.000 *** 0.485 0.166 2.928 0.003 ** 
SAT_equivalent 0.000 0.000 0.351 0.725   0.000 0.000 -0.025 0.980  
hspct2 0.051 0.042 1.205 0.228   0.001 0.043 0.034 0.973  
transferredhours -0.001 0.000 -2.984 0.003 **  0.000 0.000 -0.054 0.957  
age -0.037 0.007 -5.340 0.000 *** 0.001 0.007 0.094 0.925  
sexW 0.004 0.009 0.465 0.642   0.001 0.009 0.096 0.923  
derivationAI -0.133 0.094 -1.413 0.158   -0.002 0.097 -0.024 0.981  
derivationA 0.029 0.025 1.143 0.253   0.001 0.026 0.039 0.969  
derivationB2eH 0.070 0.061 1.135 0.256   0.005 0.063 0.078 0.938  
derivationB 0.005 0.033 0.143 0.886   0.001 0.033 0.028 0.977  
derivationF -0.050 0.039 -1.276 0.202   0.000 0.040 -0.010 0.992  
derivationHPI -0.366 0.125 -2.925 0.003 **  -0.029 0.132 -0.221 0.825  
derivationH -0.012 0.026 -0.445 0.656   0.001 0.026 0.037 0.970  
derivationU 0.058 0.077 0.756 0.450   0.007 0.079 0.085 0.932  
derivationW -0.025 0.024 -1.030 0.303   0.001 0.025 0.022 0.982  
majorschool3 -0.060 0.036 -1.685 0.092 .  0.001 0.036 0.022 0.982  
majorschool4 0.054 0.016 3.311 0.001 *** 0.001 0.017 0.057 0.954  
majorschool5 -0.050 0.038 -1.309 0.191   0.001 0.039 0.017 0.986  
majorschool9 0.017 0.120 0.138 0.890   0.004 0.121 0.030 0.976  
majorschoolC 0.007 0.025 0.291 0.771   0.000 0.025 -0.002 0.998  
majorschoolE 0.077 0.013 5.761 0.000 *** 0.001 0.014 0.089 0.929  
majorschoolJ 0.097 0.042 2.325 0.020 *  0.001 0.042 0.034 0.973  
majorschoolL 0.034 0.017 2.049 0.040 *  0.000 0.017 0.021 0.984  
majorschoolN 0.005 0.058 0.080 0.936   0.000 0.059 -0.006 0.996  
majorschoolS -0.114 0.064 -1.789 0.074 .  0.002 0.065 0.033 0.974  
majorschoolU 0.025 0.016 1.521 0.128   0.000 0.017 0.021 0.984  
motheredlevel1 0.071 0.036 1.959 0.050 .  -0.001 0.037 -0.037 0.970  
motheredlevel2 0.069 0.033 2.098 0.036 *  0.001 0.034 0.029 0.977  
motheredlevel3 0.050 0.034 1.476 0.140   0.000 0.034 -0.012 0.990  
motheredlevel4 0.079 0.033 2.405 0.016 *  0.000 0.033 0.003 0.997  
motheredlevel5 0.079 0.033 2.359 0.018 *  -0.001 0.034 -0.022 0.983  
motheredlevel6 0.076 0.036 2.128 0.033 *  -0.002 0.037 -0.044 0.965  
motheredlevelU 0.065 0.048 1.356 0.175   0.002 0.049 0.046 0.963  
fatheredlevel1 -0.024 0.038 -0.634 0.526   0.003 0.039 0.079 0.937  
fatheredlevel2 -0.013 0.034 -0.395 0.693   0.001 0.034 0.035 0.972  
fatheredlevel3 0.008 0.035 0.231 0.817   0.000 0.035 0.013 0.990  
fatheredlevel4 -0.015 0.033 -0.458 0.647   0.003 0.034 0.084 0.933  
fatheredlevel5 0.001 0.034 0.036 0.971   0.002 0.034 0.046 0.963  
fatheredlevel6 0.005 0.039 0.140 0.889   0.003 0.039 0.087 0.930  
fatheredlevelU -0.012 0.046 -0.267 0.789   0.000 0.047 0.000 1.000  
CLASSIFICATION2 -0.003 0.012 -0.218 0.828   -0.002 0.012 -0.179 0.858  
CLASSIFICATION3 0.043 0.021 2.039 0.041 *  -0.006 0.021 -0.268 0.789  
CLASSIFICATION4 0.140 0.038 3.713 0.000 *** -0.004 0.038 -0.113 0.910   
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Figure 46 Distribution of propensity scores (logit scale) both before balancing (top 
panel) and after balancing (bottom panel) 
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Figure 47 Distributions of continuous covariates before balancing (top panel) and after 
balancing (bottom panel) 
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Figure 48 Distributions of categorical covariates before balancing (top panel) and after 
balancing (bottom panel). 
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Fixed-effects model 

The unweighted average treatment effect estimate for this model was positive and 

significant, (0E = 0.0690, 7E = 0.0288, % = 2.393, " = .0167. The inverse-propensity 

weighted average treatment effect estimate was positive, similar in magnitude, and 

significant, (0E = 0.0673, 7E = 0.0286, % = 2.354, " = .0187.	Thus, in this model the 

advantage for high retrieval-practice remained significant after covariate balance was 

achieved. Students in high retrieval-practice prerequisite courses were found to perform 

approximately 0.07 standard deviations better in their subsequent course, all else being 

equal. Full regression output for these models is contained in Appendix D. Notably, the 

size of the estimated effect was approximately the same as when operationalizing treatment 

using a median split. 

Random-effects model 

The unweighted average treatment effect for this model was positive but only 

marginally significant, (0E = 0.0558,7E = 0.0286, % = 1.947, " = .0541. The average 

treatment-effect estimate for the inverse-propensity weighted model was positive, 

somewhat larger in magnitude, and still only marginally, (0E = 0.0570, 7E =

0.0293, % = 1.943, " = .0545. Thus, modeling the relationship with random effects for 

prerequisite and subsequent courses produced somewhat smaller ATE estimates and 

provided somewhat less evidence for a treatment effect. Full regression output for these 

models is contained in Appendix D. 
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Cluster-robust standard errors model 

The unweighted average treatment effect for this model was positive but not 

significant, (0E = 0.0187, 7E = 0.0171," = 0.2732. The average treatment-effect 

estimate for the inverse-propensity weighted model was positive, similar in magnitude, but 

not significant, (0E = 0.0178,7E = 0.0172," = 0.3016. Again, models using cluster-

robust standard errors but not explicitly estimating individual course effects produced 

smaller ATE estimates than either of the other modeling approaches. Full regression output 

for these models is contained in Appendix D. 

Causal Effect Estimates of High Graded Retrieval Practice (Median Split) For 
Chemistry 

It is clear from Tables 7 and 8 (Figures 39 and 44) that different prerequisite courses 

differ greatly in the number of graded retrieval practice (RP) opportunities they tend to 

incorporate. For example, in terms of central tendency the median number of graded RP 

opportunities in CH 301 is 33 (L = 26.20, 7k = 12.4), while the median in ECO 304K is 

9 (L = 8.51, 7k = 3.77) and the median in AST 301 is 4 (L = 5.5, 7k = 5.17). 

Furthermore, the course sequences under consideration span a range of subjects, the nature 

of which may be differentially amenable to graded RP opportunities. For example, the 

second semester of an introductory chemistry course may make more direct use of material 

learned in the first semester, allowing additional retrieval practice in the first-semester 

course to have a greater impact on second-semester outcomes. To explore this hypothesis, 

the three prerequisite courses with the greatest number of students are selected—Principles 

of Chemistry I (CH 301; 5 = 6251), Introduction to Microeconomics (ECO 304K; 5 =

2766), and American Government (GOV 310L; 5 = 2363)—and the analyses are 
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repeated for each in turn: propensity scores weights are recalculated and renormalized 

within each condition, covariate balance assessment is performed over again, and the same 

models are fit and interpreted. 

The creation of a dichotomous treatment variable using a median split of total 

graded retrieval practice elements (L2> = 33) resulted in a sample of 2615 students in the 

high retrieval-practice (treatment) condition and 3636 students in the low retrieval-practice 

(control) condition (values greater than the median were assigned to treatment). The 

effective sample size, after adjusting for covariates, was 2474 students in the treatment 

condition and 3545 in the control condition. See Table 9 for mean, median, and standard 

deviation of retrieval practice elements. 

Covariate balance assessment 

As before, several covariates were unbalanced between treatment and control 

conditions prior to adjustment via inverse-propensity weighting. Figure 49 depicts 

standardized mean differences for each variable (or each level for categorical variables) 

both before and after adjustment using inverse propensity-score weights. Before weighting, 

age, transferred hours, and SAT score had a standardized mean difference in excess of the 

0.1 threshold and several more were very near the threshold.  For mean differences, 

variance ratios, and K–S statistics before and after adjustment, see Appendix C. Notice that 

in each case, variance ratios are closer to unity and K–S statistics are closer to zero after 

adjustment. 

A logistic regression of treatment on covariates was performed before and after 

weighting (Table 13). Prior to adjustment, treatment and control conditions differed with 

respect to SAT scores, high school rank, transferred hours, age, classification, and certain 
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levels of ethnicity, SES, and major. After adjustment, however, no systematic differences 

remain between conditions. 

To check that the propensity-score weighting is working as intended, distributions 

of the propensity score (or the logit propensity score) for treatment and control conditions 

are visually compared before and after weighting (Figure 50), showing the expected 

overlap after adjustment. In a similar fashion, distributions of each covariate are shown for 

each condition before and after adjustment. Densities are shown for continuous variables 

(Figure 51) and histograms are shown for categorical variables (Figure 52). Altogether, 

there is ample evidence that covariate balance has been achieved. 

 

Figure 49 Love plot depicting standardized mean differences (treatment minus control) 
before and after propensity score adjustment 
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Table 13 Logistic regression coefficients predicting treatment status before and after 
propensity score adjustment  

Variable Unadjusted   Adjusted 
Estimate SE t p-value     Estimate SE t p-value   

Intercept 1.306 0.268 4.869 0.000 *** 0.608 0.281 2.169 0.030 * 
SAT_equivalent 0.000 0.000 4.294 0.000 *** 0.000 0.000 -0.090 0.929   
hspct2 0.291 0.084 3.456 0.001 *** 0.017 0.087 0.199 0.843   
transferredhours -0.002 0.001 -3.476 0.001 *** 0.000 0.001 0.022 0.982   
age -0.079 0.012 -6.872 0.000 *** -0.007 0.012 -0.544 0.586   
sexW 0.002 0.013 0.184 0.854     -0.002 0.013 -0.132 0.895   
derivationAI -0.081 0.175 -0.460 0.646     0.002 0.180 0.013 0.989   
derivationA -0.002 0.035 -0.044 0.965     -0.002 0.035 -0.058 0.954   
derivationB2eH -0.017 0.091 -0.189 0.850     -0.007 0.095 -0.076 0.940   
derivationB -0.072 0.047 -1.546 0.122     -0.004 0.048 -0.082 0.935   
derivationF -0.115 0.057 -2.021 0.043 *   0.008 0.058 0.144 0.885   
derivationHPI -0.254 0.175 -1.448 0.148     -0.015 0.183 -0.079 0.937   
derivationH -0.029 0.036 -0.789 0.430     -0.002 0.037 -0.061 0.952   
derivationU 0.107 0.096 1.107 0.268     0.000 0.100 0.004 0.997   
derivationW -0.060 0.034 -1.765 0.078 .   -0.002 0.035 -0.049 0.961   
majorschool3 0.005 0.059 0.076 0.939     0.010 0.061 0.157 0.876   
majorschool4 -0.039 0.040 -0.968 0.333     0.003 0.042 0.080 0.936   
majorschool5 0.035 0.092 0.385 0.700     0.010 0.095 0.107 0.915   
majorschool9 -0.055 0.249 -0.223 0.823     0.010 0.255 0.039 0.969   
majorschoolC 0.029 0.082 0.354 0.723     0.004 0.085 0.047 0.962   
majorschoolE 0.008 0.038 0.203 0.839     0.002 0.040 0.043 0.966   
majorschoolJ -0.140 0.060 -2.322 0.020 *   0.007 0.062 0.111 0.912   
majorschoolL -0.004 0.044 -0.082 0.935     0.005 0.046 0.112 0.911   
majorschoolN 0.089 0.089 1.006 0.315     0.010 0.091 0.115 0.909   
majorschoolS -0.068 0.132 -0.517 0.606     0.018 0.134 0.137 0.891   
majorschoolU -0.003 0.042 -0.073 0.942     0.001 0.043 0.013 0.990   
motheredlevel1 -0.009 0.051 -0.180 0.857     0.006 0.053 0.122 0.903   
motheredlevel2 0.019 0.047 0.397 0.692     0.002 0.049 0.046 0.964   
motheredlevel3 0.001 0.048 0.029 0.977     0.007 0.049 0.144 0.886   
motheredlevel4 0.049 0.046 1.049 0.294     0.004 0.048 0.091 0.928   
motheredlevel5 0.050 0.047 1.046 0.296     0.004 0.049 0.088 0.930   
motheredlevel6 0.029 0.051 0.574 0.566     0.008 0.052 0.157 0.875   
motheredlevelU 0.136 0.068 1.994 0.046 *   -0.004 0.070 -0.060 0.952   
fatheredlevel1 -0.018 0.054 -0.336 0.737     -0.002 0.056 -0.032 0.974   
fatheredlevel2 0.000 0.049 0.006 0.995     0.000 0.050 0.008 0.994   
fatheredlevel3 0.023 0.050 0.471 0.638     0.000 0.051 0.002 0.999   
fatheredlevel4 -0.008 0.048 -0.174 0.861     -0.003 0.049 -0.069 0.945   
fatheredlevel5 0.009 0.048 0.189 0.850     0.002 0.050 0.038 0.970   
fatheredlevel6 0.020 0.054 0.359 0.720     0.002 0.056 0.029 0.977   
fatheredlevelU -0.098 0.066 -1.474 0.140     0.007 0.068 0.099 0.921   
CLASSIFICATION2 0.019 0.019 0.998 0.318     0.005 0.020 0.242 0.809   
CLASSIFICATION3 0.039 0.047 0.840 0.401     -0.005 0.049 -0.101 0.919   
CLASSIFICATION4 0.268 0.127 2.102 0.036 *   0.028 0.127 0.221 0.825   
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Figure 50 Distribution of propensity scores (logit scale) both before balancing (top 
panel) and after balancing (bottom panel) 
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Figure 51 Distributions of continuous covariates before balancing (top panel) and after 
balancing (bottom panel) 
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Figure 52 Distributions of categorical covariates before balancing (top panel) and after 
balancing (bottom panel). 



 
 
 

199 

Fixed-effects model 

The unweighted average treatment effect estimate for this model was positive and 

significant, (0E = 0.091, 7E = 0.031, % = 2.914," = .004. The inverse-propensity 

weighted average treatment effect estimate was positive, similar in magnitude, and 

significant, (0E = 0.071, 7E = 0.031, % = 2.320, " = .020.	Thus, in this model the 

advantage for high retrieval-practice remained significant after covariate balance was 

achieved. Students in high retrieval-practice prerequisite courses were found to perform 

approximately 0.07 standard deviations better in their subsequent course, all else being 

equal. Full regression output for these models is contained in Appendix D. Notably, the 

size of the estimated effect was approximately the same as when operationalizing treatment 

using a median split. 

Random-effects model 

The unweighted average treatment effect for this model was positive and 

considerably larger than before, but only marginally significant, (0E = 0.156, 7E =

0.103, % = 1.507," = .077. The average treatment-effect estimate for the inverse-

propensity weighted model was positive but not significant, (0E = 0.151, 7E =

0.104, % = 1.450," = .159. Thus, modeling the relationship with random effects for 

prerequisite and subsequent courses produced larger ATE estimates but provided 

somewhat less evidence for a treatment effect. Full regression output for these models is 

contained in Appendix D. 
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Cluster-robust standard errors model 

The unweighted average treatment effect for this model was positive and 

significant, (0E = 0.062, 7E = 0.028, " = 0.032. The average treatment-effect estimate 

for the inverse-propensity weighted model was positive, similar in magnitude, and also 

significant, (0E = 0.063, 7E = 0.028, " = 0.027. Here, models using cluster-robust 

standard errors but not explicitly estimating individual course effects produced smaller 

ATE estimates than either of the other modeling approaches. Full regression output for 

these models is contained in Appendix D. 

Causal Effect Estimates of High Graded Retrieval Practice (Mean Split) For 
Chemistry 

The creation of a dichotomous treatment variable using a mean split of total graded 

retrieval practice elements (L = 26.2) resulted in a sample of 3906 students in the high 

retrieval-practice (treatment) condition and 2345 students in the low retrieval-practice 

(control) condition (values greater than the mean were assigned to treatment). The effective 

sample size, after adjusting for covariates, was 3706 students in the treatment condition 

and 2130 in the control condition. See Table 9 for mean, median, and standard deviation 

of retrieval practice elements. 

Covariate balance assessment 

Several covariates were unbalanced between treatment and control conditions prior 

to adjustment via inverse-propensity weighting. Figure 53 depicts standardized mean 

differences for each variable (or each level for categorical variables) both before and after 

adjustment using inverse propensity-score weights. Before weighting, age, high school 

rank, transferred hours, and SAT score had a standardized mean difference in excess of the 
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0.1 threshold, with several other variables near the threshold.  For mean differences, 

variance ratios, and K–S statistics before and after adjustment, see Appendix C. Notice that 

again, in each case, variance ratios are closer to unity and K–S statistics are closer to zero 

after adjustment. 

A logistic regression of treatment on covariates was performed before and after 

weighting (Table 14). Prior to adjustment, treatment and control conditions differed with 

respect to SAT scores, high school rank, transferred hours, age, and certain levels of 

ethnicity and classification. After adjustment, however, no systematic differences remain 

between conditions. 

To check that the propensity-score weighting is working as intended, distributions 

of the propensity score (or the logit propensity score) for treatment and control conditions 

are visually compared before and after weighting (Figure 54), showing the expected 

overlap after adjustment. In a similar fashion, distributions of each covariate are shown for 

each condition before and after adjustment. Densities are shown for continuous variables 

(Figure 55) and histograms are shown for categorical variables (Figure 56). Altogether, 

there is ample evidence that covariate balance has been achieved. 
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Figure 53 Love plot depicting standardized mean differences (treatment minus control) 
before and after propensity score adjustment. 
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Table 14 Logistic regression coefficients predicting treatment status before and after 
propensity score adjustment 

Variable Unadjusted   Adjusted 
Estimate SE t p-value     Estimate SE t p-value   

Intercept 2.317 0.260 8.904 <.001 *** 0.401 0.266 1.510 0.131   
SAT_equivalent 0.000 0.000 2.731 0.006 **   0.000 0.000 -0.194 0.846   
hspct2 0.375 0.082 4.588 0.000 *** -0.016 0.087 -0.188 0.851   
transferredhours -0.001 0.001 -2.486 0.013 *   0.000 0.001 0.082 0.935   
age -0.123 0.011 -10.957 <.001 *** 0.007 0.011 0.581 0.561   
sexW 0.017 0.013 1.316 0.188     0.003 0.013 0.233 0.816   
derivationAI 0.132 0.170 0.778 0.437     -0.018 0.177 -0.103 0.918   
derivationA 0.035 0.034 1.050 0.294     0.002 0.035 0.047 0.963   
derivationB2eH 0.202 0.088 2.290 0.022 *   -0.015 0.092 -0.164 0.870   
derivationB -0.005 0.045 -0.111 0.911     0.007 0.048 0.139 0.890   
derivationF -0.090 0.055 -1.631 0.103     0.017 0.057 0.297 0.766   
derivationHPI -0.198 0.170 -1.165 0.244     0.006 0.184 0.030 0.976   
derivationH 0.005 0.035 0.135 0.893     0.006 0.037 0.152 0.879   
derivationU 0.105 0.093 1.123 0.261     0.006 0.100 0.058 0.954   
derivationW -0.038 0.033 -1.166 0.244     0.003 0.035 0.077 0.938   
majorschool3 -0.058 0.057 -1.017 0.309     -0.013 0.062 -0.208 0.835   
majorschool4 0.001 0.039 0.023 0.981     -0.012 0.042 -0.283 0.777   
majorschool5 0.004 0.089 0.049 0.961     -0.009 0.096 -0.089 0.929   
majorschool9 -0.144 0.241 -0.598 0.550     0.069 0.232 0.297 0.766   
majorschoolC 0.024 0.080 0.297 0.767     -0.019 0.085 -0.223 0.823   
majorschoolE 0.040 0.037 1.080 0.280     -0.011 0.040 -0.271 0.787   
majorschoolJ 0.064 0.058 1.101 0.271     -0.014 0.062 -0.226 0.821   
majorschoolL 0.068 0.043 1.604 0.109     -0.011 0.046 -0.236 0.813   
majorschoolN 0.006 0.086 0.068 0.945     -0.004 0.092 -0.045 0.964   
majorschoolS 0.045 0.128 0.348 0.728     -0.025 0.138 -0.184 0.854   
majorschoolU 0.005 0.041 0.125 0.900     -0.009 0.044 -0.214 0.830   
motheredlevel1 0.025 0.049 0.498 0.618     0.005 0.052 0.100 0.921   
motheredlevel2 0.033 0.046 0.732 0.464     0.013 0.048 0.277 0.782   
motheredlevel3 -0.016 0.046 -0.353 0.724     0.008 0.048 0.156 0.876   
motheredlevel4 0.045 0.045 1.003 0.316     0.014 0.047 0.296 0.768   
motheredlevel5 0.043 0.046 0.935 0.350     0.010 0.048 0.212 0.832   
motheredlevel6 0.013 0.049 0.272 0.786     0.008 0.051 0.149 0.882   
motheredlevelU 0.064 0.066 0.971 0.332     0.007 0.069 0.100 0.920   
fatheredlevel1 -0.005 0.052 -0.102 0.919     0.006 0.055 0.107 0.915   
fatheredlevel2 -0.032 0.047 -0.677 0.498     -0.002 0.050 -0.045 0.964   
fatheredlevel3 -0.017 0.048 -0.360 0.719     0.003 0.051 0.052 0.958   
fatheredlevel4 -0.033 0.046 -0.725 0.468     0.002 0.049 0.051 0.960   
fatheredlevel5 -0.010 0.047 -0.208 0.835     0.002 0.049 0.044 0.965   
fatheredlevel6 -0.001 0.053 -0.016 0.987     0.007 0.055 0.129 0.897   
fatheredlevelU -0.053 0.064 -0.818 0.414     -0.001 0.067 -0.022 0.983   
CLASSIFICATION2 -0.025 0.019 -1.302 0.193     0.000 0.020 -0.010 0.992   
CLASSIFICATION3 0.046 0.045 1.013 0.311     -0.022 0.048 -0.463 0.643   
CLASSIFICATION4 0.335 0.124 2.705 0.007 **   -0.080 0.119 -0.668 0.504   
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Figure 54 Distribution of propensity scores (logit scale) both before balancing (top 
panel) and after balancing (bottom panel). 
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Figure 55 Distributions of continuous covariates before balancing (top panel) and after 
balancing (bottom panel). 
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Figure 56 Distributions of categorical covariates before balancing (top panel) and after 
balancing (bottom panel). 
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Fixed-effects model 

The unweighted average treatment effect estimate for the fixed-effects model was 

positive and significant, (0E = 0.123, 7E = 0.035, % = 3.561, " < .001. The inverse-

propensity weighted average treatment effect estimate was positive, slightly smaller in 

magnitude, and significant, (0E = 0.100, 7E = 0.034, % = 2.924, " = .003.	Thus, in 

this model the advantage for high retrieval-practice remained significant after covariate 

balance was achieved. Students in high retrieval-practice prerequisite courses were found 

to perform approximately 0.1 standard deviations better in their subsequent chemistry 

course, all else being equal. Full regression output for these models is contained in 

Appendix D. Notably, the size of the estimated effect was slightly larger here than when 

operationalizing treatment using a median split. 

Random-effects model 

The unweighted average treatment effect for the random-effects model was 

positive, considerably larger than before, and significant, (0E = 0.263, 7E = 0.091, % =

2.890, " = .007. The average treatment-effect estimate for the inverse-propensity 

weighted model was positive, slightly smaller in magnitude, and significant, (0E =

0.241, 7E = 0.086, % = 2.810, " = .009. Thus, modeling the relationship with random 

effects for prerequisite and subsequent courses produced larger estimates of the ATE. Full 

regression output for these models is contained in Appendix D. 

Cluster-robust standard errors model 

The unweighted average treatment effect for the model with cluster-robust standard 

errors was positive and significant, (0E = 0.057, 7E = 0.028, " = 0.047. The average 
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treatment-effect estimate for the inverse-propensity weighted model was positive, similar 

in magnitude, but only marginally significant, (0E = 0.055, 7E = 0.029, " = 0.066. 

Here, models using cluster-robust standard errors but not explicitly estimating individual 

course effects produced smaller ATE estimates than either of the other modeling 

approaches. Full regression output for these models is contained in Appendix D. 

Causal Effect Estimates of High Graded Retrieval Practice (Median Split) For 
Economics 

The creation of a dichotomous treatment variable using a median split of total 

graded retrieval practice elements (L2> = 9) resulted in a sample of 1297 students in the 

high retrieval-practice (treatment) condition and 1469 students in the low retrieval-practice 

(control) condition (values greater than the mean were assigned to treatment). The effective 

sample size, after adjusting for covariates, was 1260 students in the treatment condition 

and 1443 in the control condition. See Table 9 for mean, median, and standard deviation 

of retrieval practice elements. 

Covariate balance assessment 

Several covariates were unbalanced between treatment and control conditions prior 

to adjustment via inverse-propensity weighting. Figure 57 depicts standardized mean 

differences for each variable (or each level for categorical variables) both before and after 

adjustment using inverse propensity-score weights. Specifically, before weighting, high 

school transferred hours had a standardized mean difference in excess of the 0.1 threshold, 

with several other variables near the threshold.  For mean differences, variance ratios, and 

K–S statistics before and after adjustment, see Appendix C. Notice that again, in each case, 

variance ratios are closer to unity and K–S statistics are closer to zero after adjustment. 
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A logistic regression of treatment on covariates was performed before and after 

weighting (Table 15). Prior to adjustment, treatment and control conditions differed with 

respect to SAT scores and transferred hours. After adjustment, however, no systematic 

differences remain between conditions. 

To check that the propensity-score weighting is working as intended, distributions 

of the propensity score (or the logit propensity score) for treatment and control conditions 

are visually compared before and after weighting (Figure 58), showing the expected 

overlap after adjustment. In a similar fashion, distributions of each covariate are shown for 

each condition before and after adjustment. Densities are shown for continuous variables 

(Figure 59) and histograms are shown for categorical variables (Figure 60). Altogether, 

there is ample evidence that covariate balance has been achieved. 
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Figure 57 Love plot depicting standardized mean differences (treatment minus control) 
before and after propensity score adjustment 
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Table 15 Logistic regression coefficients predicting treatment status before and after 
propensity score adjustment  

Variable Unadjusted   Adjusted 
Estimate SE t p-value     Estimate SE t p-value   

Intercept 1.136 0.404 2.812 0.005 **   0.529 0.411 1.288 0.198   
SAT_equivalent 0.000 0.000 -2.077 0.038 *   0.000 0.000 -0.045 0.964   
hspct2 -0.083 0.083 -0.992 0.321     0.000 0.084 0.000 1.000   
transferredhours 0.002 0.001 2.863 0.004 **   0.000 0.001 0.005 0.996   
age -0.026 0.018 -1.410 0.159     -0.001 0.019 -0.062 0.950   
sexW -0.006 0.020 -0.291 0.771     0.000 0.020 -0.009 0.993   
derivationAI 0.052 0.169 0.306 0.760     -0.002 0.173 -0.011 0.991   
derivationA 0.015 0.061 0.245 0.806     -0.001 0.062 -0.018 0.986   
derivationB2eH -0.134 0.162 -0.827 0.409     -0.017 0.167 -0.102 0.919   
derivationB -0.099 0.080 -1.227 0.220     0.000 0.081 -0.001 0.999   
derivationF -0.103 0.084 -1.233 0.218     0.013 0.084 0.152 0.879   
derivationHPI -0.442 0.256 -1.726 0.084 .   -0.501 0.332 -1.509 0.131   
derivationH -0.032 0.063 -0.508 0.611     0.000 0.064 -0.002 0.998   
derivationU -0.110 0.161 -0.683 0.495     0.001 0.162 0.009 0.993   
derivationW 0.011 0.058 0.190 0.850     -0.001 0.059 -0.014 0.989   
majorschool3 0.192 0.140 1.366 0.172     0.011 0.143 0.076 0.940   
majorschool4 -0.053 0.051 -1.034 0.301     0.003 0.051 0.050 0.960   
majorschool5 -0.014 0.109 -0.132 0.895     -0.002 0.110 -0.016 0.987   
majorschool9 -0.132 0.289 -0.457 0.648     0.009 0.288 0.031 0.975   
majorschoolC -0.086 0.063 -1.367 0.172     0.001 0.063 0.012 0.990   
majorschoolE -0.036 0.039 -0.908 0.364     -0.003 0.040 -0.071 0.943   
majorschoolJ -0.317 0.208 -1.523 0.128     -0.028 0.217 -0.131 0.896   
majorschoolL 0.052 0.028 1.817 0.069 .   0.000 0.029 0.015 0.988   
majorschoolN -0.145 0.208 -0.697 0.486     0.004 0.207 0.017 0.986   
majorschoolS -0.158 0.168 -0.937 0.349     -0.012 0.174 -0.071 0.944   
majorschoolU -0.054 0.028 -1.892 0.059 .   0.000 0.029 -0.017 0.987   
motheredlevel1 0.103 0.093 1.109 0.267     -0.005 0.092 -0.059 0.953   
motheredlevel2 0.142 0.077 1.855 0.064 .   -0.008 0.076 -0.102 0.919   
motheredlevel3 0.124 0.080 1.558 0.119     -0.009 0.079 -0.110 0.912   
motheredlevel4 0.121 0.077 1.579 0.114     -0.009 0.076 -0.113 0.910   
motheredlevel5 0.122 0.079 1.555 0.120     -0.007 0.078 -0.092 0.927   
motheredlevel6 0.096 0.085 1.130 0.259     -0.008 0.084 -0.091 0.927   
motheredlevelU 0.159 0.118 1.354 0.176     -0.016 0.118 -0.138 0.890   
fatheredlevel1 -0.015 0.092 -0.160 0.873     0.004 0.094 0.039 0.969   
fatheredlevel2 0.042 0.079 0.529 0.597     0.010 0.079 0.133 0.894   
fatheredlevel3 -0.003 0.083 -0.038 0.970     0.006 0.083 0.073 0.942   
fatheredlevel4 0.003 0.079 0.033 0.974     0.008 0.078 0.096 0.923   
fatheredlevel5 0.011 0.080 0.142 0.887     0.007 0.079 0.087 0.931   
fatheredlevel6 0.038 0.098 0.385 0.701     0.005 0.098 0.053 0.958   
fatheredlevelU 0.038 0.114 0.332 0.740     0.013 0.115 0.113 0.910   
CLASSIFICATION2 0.024 0.030 0.779 0.436     0.001 0.031 0.021 0.984   
CLASSIFICATION3 0.022 0.065 0.341 0.733     0.014 0.065 0.216 0.829   
CLASSIFICATION4 0.077 0.134 0.577 0.564     0.017 0.137 0.121 0.904   
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Figure 58 Distribution of propensity scores (logit scale) both before balancing (top 
panel) and after balancing (bottom panel) 
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Figure 59 Distributions of continuous covariates before balancing (top panel) and after 
balancing (bottom panel) 
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Figure 60 Distributions of categorical covariates before balancing (top panel) and after 
balancing (bottom panel). 
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Fixed-effects model 

The unweighted average treatment effect estimate for the fixed-effects model was 

positive but not significant, (0E = 0.074, 7E = 0.064, % = 1.167, " = .243. The inverse-

propensity weighted average treatment effect estimate was positive and larger in 

magnitude, but not significant, (0E = 0.086, 7E = 0.064, % = 1.350, " = .177.	Thus, 

for the economics course sequence the advantage for high retrieval-practice was not 

significant after covariate balance was achieved. Full regression output for these models is 

contained in Appendix D.  

Random-effects model 

The unweighted average treatment effect for the random-effects model was positive 

but only marginally significant, (0E = 0.083, 7E = 0.045, % = 1.857," = .077. The 

average treatment-effect estimate for the inverse-propensity weighted model was positive, 

similar in magnitude, but only marginally significant, (0E = 0.082, 7E = 0.044, % =

1.840, " = .081. Again, for the economics course sequence, the effect of high retrieval-

practice  in the prerequisite course was not significant. Full regression output for these 

models is contained in Appendix D. 

Cluster-robust standard errors model 

The unweighted average treatment effect for the model with cluster-robust standard 

errors was positive but not significant, (0E = 0.048, 7E = 0.037, " = 0.198. The 

average treatment-effect estimate for the inverse-propensity weighted model was positive, 

similar in magnitude, but not significant, (0E = 0.047, 7E = 0.037," = 0.214. Here 

again, models using cluster-robust standard errors but not explicitly estimating individual 
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course effects produced smaller ATE estimates than either of the other modeling 

approaches. Full regression output for these models is contained in Appendix D. 

Causal Effect Estimates of High Graded Retrieval Practice (Mean Split) For 
Economics 

The creation of a dichotomous treatment variable using a mean split of total graded 

retrieval practice elements in the prerequisite course ECO 304K (L = 8.51) resulted in a 

sample of 1414 students in the high retrieval-practice (treatment) condition and 1352 

students in the low retrieval-practice (control) condition (values greater than the mean were 

assigned to treatment). The effective sample size, after adjusting for covariates, was 1376 

students in the treatment condition and 1327 in the control condition. See Table 9 for mean, 

median, and standard deviation of retrieval practice elements. 

Covariate balance assessment 

Only one covariate appeared to be unbalanced between treatment and control 

conditions prior to adjustment via inverse-propensity weighting. Figure 61 depicts 

standardized mean differences for each variable (or each level for categorical variables) 

both before and after adjustment using inverse propensity-score weights. Specifically, 

before weighting, high school transferred hours had a standardized mean difference in 

excess of the 0.1 threshold. For mean differences, variance ratios, and K–S statistics before 

and after adjustment, see Appendix C. Notice that again, in each case, variance ratios are 

closer to unity and K–S statistics are closer to zero after adjustment. 

A logistic regression of treatment on covariates was performed before and after 

weighting (Table 16). Prior to adjustment, treatment and control conditions differed only 
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with respect to transferred hours. After adjustment, however, no systematic differences 

remained between conditions. 

To check that the propensity-score weighting worked as intended, distributions of 

the propensity score (or the logit propensity score) for treatment and control conditions are 

visually compared before and after weighting (Figure 62), showing the expected overlap 

after adjustment. In a similar fashion, distributions of each covariate are shown for each 

condition before and after adjustment. Densities are shown for continuous variables (Figure 

63) and histograms are shown for categorical variables (Figure 64). Altogether, there is 

ample evidence that covariate balance has been achieved.  
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Figure 61 Love plot depicting standardized mean differences (treatment minus control) 
before and after propensity score adjustment 
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Table 16 Logistic regression coefficients predicting treatment status before and after 
propensity score adjustment  

Variable Unadjusted   Adjusted 
Estimate SE t p-value     Estimate SE t p-value   

Intercept 1.217 0.404 3.014 0.003 **   0.505 0.409 1.233 0.218   
SAT_equivalent 0.000 0.000 -1.726 0.084 .   0.000 0.000 -0.143 0.887   
hspct2 -0.060 0.083 -0.719 0.472     -0.004 0.084 -0.051 0.959   
transferredhours 0.004 0.001 4.390 0.000 *** 0.000 0.001 -0.028 0.977   
age -0.033 0.018 -1.795 0.073 .   0.001 0.019 0.040 0.968   
sexW -0.009 0.020 -0.470 0.638     0.000 0.020 -0.009 0.992   
derivationAI 0.020 0.169 0.117 0.907     -0.001 0.174 -0.006 0.996   
derivationA 0.035 0.061 0.579 0.563     0.000 0.062 0.005 0.996   
derivationB2eH -0.164 0.162 -1.016 0.310     -0.018 0.167 -0.107 0.915   
derivationB -0.105 0.080 -1.306 0.192     -0.002 0.081 -0.023 0.982   
derivationF -0.065 0.084 -0.778 0.437     0.004 0.085 0.044 0.965   
derivationHPI -0.461 0.256 -1.800 0.072 .   -0.502 0.333 -1.506 0.132   
derivationH -0.041 0.063 -0.643 0.521     -0.001 0.064 -0.009 0.993   
derivationU -0.146 0.161 -0.901 0.367     0.008 0.161 0.050 0.960   
derivationW 0.012 0.058 0.204 0.839     0.000 0.059 0.007 0.995   
majorschool3 0.154 0.140 1.096 0.273     0.012 0.144 0.081 0.936   
majorschool4 -0.016 0.051 -0.309 0.758     -0.001 0.051 -0.025 0.980   
majorschool5 0.002 0.109 0.022 0.982     -0.002 0.109 -0.019 0.985   
majorschool9 0.162 0.289 0.561 0.575     -0.037 0.274 -0.134 0.893   
majorschoolC -0.038 0.063 -0.607 0.544     -0.001 0.063 -0.014 0.989   
majorschoolE -0.018 0.039 -0.447 0.655     -0.005 0.040 -0.121 0.903   
majorschoolJ -0.342 0.208 -1.646 0.100 .   -0.012 0.213 -0.058 0.954   
majorschoolL 0.037 0.028 1.315 0.189     0.002 0.029 0.062 0.951   
majorschoolN -0.173 0.208 -0.835 0.404     0.002 0.207 0.010 0.992   
majorschoolS -0.191 0.168 -1.136 0.256     -0.012 0.173 -0.071 0.943   
majorschoolU -0.051 0.028 -1.782 0.075 .   -0.003 0.029 -0.111 0.911   
motheredlevel1 0.088 0.093 0.947 0.344     -0.003 0.092 -0.032 0.975   
motheredlevel2 0.119 0.077 1.546 0.122     -0.002 0.076 -0.022 0.982   
motheredlevel3 0.107 0.080 1.339 0.181     -0.003 0.079 -0.043 0.966   
motheredlevel4 0.117 0.077 1.519 0.129     -0.004 0.076 -0.049 0.961   
motheredlevel5 0.119 0.079 1.508 0.132     -0.003 0.078 -0.038 0.970   
motheredlevel6 0.075 0.085 0.889 0.374     -0.001 0.084 -0.017 0.986   
motheredlevelU 0.124 0.118 1.054 0.292     -0.011 0.118 -0.089 0.929   
fatheredlevel1 0.008 0.092 0.091 0.928     0.007 0.093 0.072 0.943   
fatheredlevel2 0.051 0.079 0.647 0.518     0.011 0.079 0.142 0.887   
fatheredlevel3 0.004 0.083 0.046 0.963     0.007 0.082 0.090 0.928   
fatheredlevel4 0.027 0.079 0.348 0.728     0.008 0.078 0.096 0.924   
fatheredlevel5 0.032 0.080 0.404 0.686     0.008 0.079 0.105 0.916   
fatheredlevel6 0.049 0.098 0.507 0.612     0.004 0.098 0.040 0.968   
fatheredlevelU 0.068 0.114 0.600 0.549     0.017 0.115 0.146 0.884   
CLASSIFICATION2 0.017 0.030 0.549 0.583     -0.002 0.031 -0.076 0.939   
CLASSIFICATION3 0.021 0.065 0.317 0.751     0.006 0.065 0.087 0.930   
CLASSIFICATION4 0.004 0.134 0.031 0.975     0.020 0.135 0.152 0.880   
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Figure 62 Distribution of propensity scores (logit scale) both before balancing (top 
panel) and after balancing (bottom panel) 
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Figure 63 Distributions of continuous covariates before balancing (top panel) and after 
balancing (bottom panel) 
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Figure 64 Distributions of categorical covariates before balancing (top panel) and after 
balancing (bottom panel). 
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Fixed-effects model 

The unweighted average treatment effect estimate for the fixed-effects model was 

positive but only marginally significant, (0E = 0.159, 7E = 0.094, % = 1.706," = .089. 

The inverse-propensity weighted average treatment effect estimate was positive and similar 

in magnitude, but still only marginally significant, (0E = 0.159, 7E = 0.093, % = 1.706,

" = .088.	Thus, for the economics course sequence the advantage for high retrieval-

practice was not significant after covariate balance was achieved. Full regression output 

for these models is contained in Appendix D.  

Random-effects model 

The unweighted average treatment effect for the random-effects model was positive 

and significant, (0E = 0.101, 7E = 0.043, % = 2.356," = .028. The average treatment-

effect estimate for the inverse-propensity weighted model was positive, similar in 

magnitude, and significant, (0E = 0.103, 7E = 0.045, % = 2.309," = .031. Here, for the 

economics course sequence, the effect of high retrieval-practice in the prerequisite course 

was significant after covariate balance was achieved. Full regression output for these 

models is contained in Appendix D. 

Cluster-robust standard errors model 

 The unweighted average treatment effect for the model with cluster-robust 

standard errors was positive but only marginally significant, (0E = 0.070, 7E =

0.038, " = 0.069. The average treatment-effect estimate for the inverse-propensity 

weighted model was positive, similar in magnitude, and again only marginally significant, 

(0E = 0.067, 7E = 0.038, " = 0.082. Here again, models using cluster-robust standard 
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errors but not explicitly estimating individual course effects produced smaller ATE 

estimates than either of the other modeling approaches. Full regression output for these 

models is contained in Appendix D. 

Causal Effect Estimates of High Graded Retrieval Practice (Median Split) For 
Government 

The creation of a dichotomous treatment variable using a median split of total 

graded retrieval practice elements (L2> = 10) resulted in a sample of 523 students in the 

high retrieval-practice (treatment) condition and 1840 students in the low retrieval-practice 

(control) condition (values greater than the median were assigned to treatment). The 

effective sample size, after adjusting for covariates, was 445 students in the treatment 

condition and 1820 in the control condition. See Table 9 for mean, median, and standard 

deviation of retrieval practice elements. 

Covariate balance assessment 

Several covariates were unbalanced between treatment and control conditions prior 

to adjustment via inverse-propensity weighting. Figure 65 depicts standardized mean 

differences for each variable (or each level for categorical variables) both before and after 

adjustment using inverse propensity-score weights. Specifically, before weighting, age had 

a standardized mean difference in excess of the 0.1 threshold (indeed, exceeding 2.0), with 

several other variables near the threshold.  For mean differences, variance ratios, and K–S 

statistics before and after adjustment, see Appendix C. Notice that again, in each case, 

variance ratios are closer to unity and K–S statistics are closer to zero after adjustment. 

A logistic regression of treatment on covariates was performed before and after 

weighting (Table 17). Prior to adjustment, treatment and control conditions differed with 
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respect to high school rank, age, and certain levels of major. After adjustment, however, 

no systematic differences remain between conditions.  

To check that the propensity-score weighting is working as intended, distributions 

of the propensity score (or the logit propensity score) for treatment and control conditions 

are visually compared before and after weighting (Figure 66), showing the expected 

overlap after adjustment. In a similar fashion, distributions of each covariate are shown for 

each condition before and after adjustment. Densities are shown for continuous variables 

(Figure 67) and histograms are shown for categorical variables (Figure 68). Altogether, 

there is ample evidence that covariate balance has been achieved.  
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Figure 65 Love plot depicting standardized mean differences (treatment minus control) 
before and after propensity score adjustment 
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Table 17 Logistic regression coefficients predicting treatment status before and after 
propensity score adjustment  

Variable Unadjusted   Adjusted 
Estimate SE t p-value     Estimate SE t p-value   

Intercept 1.309 0.314 4.169 0.000 *** 0.370 0.377 0.980 0.327   
SAT_equivalent 0.000 0.000 0.031 0.976     0.000 0.000 0.769 0.442   
hspct2 0.142 0.066 2.155 0.031 *   0.012 0.082 0.143 0.886   
transferredhours 0.001 0.001 1.310 0.190     0.000 0.001 0.383 0.701   
age -0.062 0.014 -4.530 0.000 *** 0.002 0.017 0.093 0.926   
sexW -0.017 0.018 -0.912 0.362     0.002 0.022 0.068 0.946   
derivationAI -0.101 0.164 -0.615 0.539     0.006 0.201 0.029 0.977   
derivationA -0.037 0.054 -0.692 0.489     0.012 0.066 0.174 0.862   
derivationB2eH -0.096 0.112 -0.858 0.391     -0.012 0.138 -0.086 0.931   
derivationB 0.046 0.063 0.732 0.464     0.031 0.076 0.403 0.687   
derivationF -0.009 0.081 -0.106 0.916     0.058 0.098 0.593 0.553   
derivationHPI -0.284 0.246 -1.156 0.248     -0.508 0.411 -1.238 0.216   
derivationH 0.005 0.052 0.096 0.924     0.011 0.064 0.171 0.864   
derivationU 0.392 0.243 1.613 0.107     0.207 0.296 0.701 0.484   
derivationW -0.034 0.049 -0.705 0.481     0.002 0.060 0.032 0.974   
majorschool3 -0.030 0.059 -0.506 0.613     0.001 0.073 0.014 0.989   
majorschool4 0.002 0.036 0.063 0.950     -0.001 0.045 -0.014 0.989   
majorschool5 0.129 0.054 2.374 0.018 *   0.025 0.066 0.371 0.711   
majorschool9 -0.165 0.172 -0.957 0.339     -0.501 0.289 -1.731 0.084 . 
majorschoolC -0.047 0.038 -1.231 0.219     0.017 0.047 0.372 0.710   
majorschoolE -0.019 0.032 -0.579 0.563     0.007 0.040 0.186 0.852   
majorschoolJ 0.123 0.082 1.487 0.137     -0.010 0.104 -0.092 0.927   
majorschoolL 0.018 0.033 0.529 0.597     0.002 0.041 0.053 0.958   
majorschoolN -0.062 0.096 -0.644 0.519     0.034 0.114 0.294 0.769   
majorschoolS -0.183 0.084 -2.166 0.030 *   0.086 0.097 0.894 0.372   
majorschoolU -0.006 0.033 -0.182 0.855     0.007 0.040 0.177 0.860   
motheredlevel1 0.060 0.074 0.816 0.415     0.001 0.093 0.014 0.989   
motheredlevel2 0.034 0.068 0.503 0.615     0.022 0.085 0.253 0.801   
motheredlevel3 0.016 0.070 0.225 0.822     -0.002 0.087 -0.018 0.985   
motheredlevel4 0.026 0.069 0.369 0.712     -0.008 0.087 -0.094 0.926   
motheredlevel5 0.048 0.071 0.671 0.503     -0.012 0.089 -0.137 0.891   
motheredlevel6 0.093 0.076 1.233 0.218     -0.015 0.095 -0.155 0.877   
motheredlevelU 0.003 0.094 0.033 0.974     -0.039 0.117 -0.332 0.740   
fatheredlevel1 -0.053 0.077 -0.693 0.488     -0.029 0.096 -0.304 0.761   
fatheredlevel2 -0.037 0.069 -0.542 0.588     0.012 0.085 0.137 0.891   
fatheredlevel3 0.008 0.070 0.112 0.911     0.010 0.087 0.118 0.906   
fatheredlevel4 -0.046 0.069 -0.670 0.503     -0.015 0.086 -0.176 0.860   
fatheredlevel5 0.006 0.070 0.088 0.930     -0.006 0.087 -0.064 0.949   
fatheredlevel6 0.018 0.079 0.233 0.816     -0.021 0.098 -0.216 0.829   
fatheredlevelU -0.072 0.088 -0.823 0.410     0.000 0.108 -0.002 0.998   
CLASSIFICATION2 0.014 0.020 0.698 0.485     -0.005 0.024 -0.194 0.846   
CLASSIFICATION3 -0.018 0.034 -0.527 0.598     -0.013 0.042 -0.313 0.754   
CLASSIFICATION4 0.073 0.053 1.370 0.171     -0.012 0.066 -0.185 0.853   
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Figure 66 Distribution of propensity scores (logit scale) both before balancing (top 
panel) and after balancing (bottom panel) 
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Figure 67 Distributions of continuous covariates before balancing (top panel) and after 
balancing (bottom panel) 
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Figure 68 Distributions of categorical covariates before balancing (top panel) and after 
balancing (bottom panel). 
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Fixed-effects model 

The unweighted average treatment effect estimate for the fixed-effects model was 

positive but not significant, (0E = 0.044, 7E = 0.051, % = 0.848, " = .397. The inverse-

propensity weighted average treatment effect estimate was positive, much smaller in 

magnitude, and not significant, (0E = 0.025, 7E = 0.046, % = 0.540, " = .589.	Thus, 

for the government course sequence the advantage for high retrieval-practice (i.e., above 

the median) was not significant after covariate balance was achieved. Full regression output 

for these models is contained in Appendix D.  

Random-effects model 

The unweighted average treatment effect for the random-effects model was 

negative, very small, and not significant, (0E = −0.004, 7E = 0.059, % = −0.073," =

.943. The average treatment-effect estimate for the inverse-propensity weighted model was 

negative, larger in magnitude, and not significant, (0E = −0.013, 7E = 0.053, % =

1.840, " = .814. Again, for the government course sequence, the effect of high retrieval-

practice  in the prerequisite course was not significant. Full regression output for these 

models is contained in Appendix D. 

Cluster-robust standard errors model 

The unweighted average treatment effect for the model with cluster-robust standard 

errors was negative and large in magnitude but not significant, (0E = −0.055, 7E =

0.037, " = 0.152. The average treatment-effect estimate for the inverse-propensity 

weighted model was negative, larger in magnitude, but not significant, (0E =
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−0.072, 7E = 0.043," = 0.121. Full regression output for these models is contained in 

Appendix D. 

 

Causal Effect Estimates of High Graded Retrieval Practice (Mean Split) For 
Government 

The creation of a dichotomous treatment variable using a mean split of total graded 

retrieval practice elements (L = 8.22) resulted in a sample of 1539 students in the high 

retrieval-practice (treatment) condition and 824 students in the low retrieval-practice 

(control) condition (values greater than the median were assigned to treatment). The 

effective sample size, after adjusting for covariates, was 1499 students in the treatment 

condition and 775 in the control condition. See Table 9 for mean, median, and standard 

deviation of retrieval practice elements. 

Covariate balance assessment 

Several covariates were unbalanced between treatment and control conditions prior 

to adjustment via inverse-propensity weighting. Figure 69 depicts standardized mean 

differences for each variable (or each level for categorical variables) both before and after 

adjustment using inverse propensity-score weights. Specifically, before weighting, SAT 

and transferred hours had standardized mean differences in excess of the 0.1 threshold. For 

mean differences, variance ratios, and K–S statistics before and after adjustment, see 

Appendix C. Notice that again, in each case, variance ratios are closer to unity and K–S 

statistics are closer to zero after adjustment. 

A logistic regression of treatment on covariates was performed before and after 

weighting (Table 18). Prior to adjustment, treatment and control conditions differed with 
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respect to certain levels of ethnicity, major, SES, and classification. After adjustment, 

however, no systematic differences remained between conditions.  

To confirm that the propensity-score weighting has worked as intended, 

distributions of the propensity score (or the logit propensity score) for treatment and control 

conditions are visually compared before and after weighting (Figure 70), showing the 

expected overlap after adjustment. In a similar fashion, distributions of each covariate are 

shown for each condition before and after adjustment. Densities are shown for continuous 

variables (Figure 71) and histograms are shown for categorical variables (Figure 72). 

Altogether, there is ample evidence that covariate balance has been achieved. 
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Figure 69 Love plot depicting standardized mean differences (treatment minus control) 
before and after propensity score adjustment 
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Table 18 Logistic regression coefficients predicting treatment status before and after 
propensity score adjustment  

Variable Unadjusted   Adjusted 
Estimate SE t p-value     Estimate SE t p-value   

Intercept 0.338 0.361 0.937 0.349     0.567 0.386 1.468 0.142   
SAT_equivalent 0.000 0.000 1.510 0.131     0.000 0.000 -0.154 0.877   
hspct2 0.030 0.076 0.393 0.694     0.003 0.081 0.040 0.968   
transferredhours -0.001 0.001 -1.466 0.143     0.000 0.001 -0.053 0.958   
age 0.008 0.016 0.502 0.616     -0.003 0.017 -0.209 0.835   
sexW -0.007 0.021 -0.312 0.755     0.001 0.022 0.060 0.952   
derivationAI -0.499 0.189 -2.647 0.008 **   0.030 0.197 0.155 0.877   
derivationA 0.042 0.062 0.675 0.500     0.016 0.065 0.246 0.806   
derivationB2eH 0.047 0.128 0.365 0.715     0.038 0.141 0.273 0.785   
derivationB 0.087 0.072 1.208 0.227     0.005 0.076 0.072 0.943   
derivationF 0.076 0.093 0.821 0.412     -0.010 0.096 -0.108 0.914   
derivationHPI -0.666 0.283 -2.356 0.019 *   -0.487 0.392 -1.240 0.215   
derivationH 0.007 0.060 0.111 0.912     0.011 0.063 0.178 0.859   
derivationU -0.053 0.280 -0.189 0.850     0.022 0.303 0.073 0.942   
derivationW 0.009 0.056 0.162 0.871     0.011 0.059 0.193 0.847   
majorschool3 -0.136 0.068 -1.997 0.046 *   0.009 0.072 0.128 0.898   
majorschool4 -0.061 0.041 -1.465 0.143     0.011 0.044 0.260 0.795   
majorschool5 -0.097 0.062 -1.557 0.120     0.012 0.067 0.173 0.863   
majorschool9 0.006 0.198 0.029 0.977     -0.004 0.204 -0.021 0.983   
majorschoolC -0.083 0.044 -1.899 0.058 .   0.019 0.047 0.400 0.689   
majorschoolE -0.057 0.037 -1.535 0.125     0.009 0.039 0.217 0.828   
majorschoolJ -0.179 0.095 -1.887 0.059 .   0.013 0.101 0.126 0.900   
majorschoolL -0.079 0.038 -2.069 0.039 *   0.010 0.041 0.258 0.797   
majorschoolN -0.081 0.110 -0.735 0.462     -0.001 0.119 -0.010 0.992   
majorschoolS -0.352 0.097 -3.625 0.000 *** 0.000 0.105 -0.001 0.999   
majorschoolU -0.034 0.038 -0.909 0.364     0.015 0.040 0.368 0.713   
motheredlevel1 0.040 0.085 0.473 0.636     -0.004 0.091 -0.041 0.967   
motheredlevel2 0.103 0.078 1.311 0.190     0.012 0.086 0.145 0.884   
motheredlevel3 0.108 0.080 1.349 0.178     0.001 0.087 0.015 0.988   
motheredlevel4 0.120 0.079 1.515 0.130     0.003 0.086 0.033 0.974   
motheredlevel5 0.112 0.081 1.369 0.171     0.006 0.089 0.065 0.948   
motheredlevel6 0.239 0.087 2.754 0.006 **   -0.007 0.094 -0.075 0.940   
motheredlevelU 0.124 0.109 1.145 0.252     0.009 0.117 0.074 0.941   
fatheredlevel1 -0.050 0.089 -0.563 0.574     -0.002 0.096 -0.024 0.981   
fatheredlevel2 -0.085 0.079 -1.076 0.282     -0.014 0.087 -0.157 0.875   
fatheredlevel3 -0.036 0.080 -0.450 0.653     -0.015 0.088 -0.168 0.867   
fatheredlevel4 -0.096 0.079 -1.217 0.224     -0.011 0.087 -0.126 0.900   
fatheredlevel5 -0.036 0.080 -0.448 0.654     -0.014 0.088 -0.160 0.873   
fatheredlevel6 -0.115 0.090 -1.274 0.203     -0.009 0.099 -0.087 0.931   
fatheredlevelU -0.123 0.101 -1.218 0.223     -0.019 0.109 -0.173 0.862   
CLASSIFICATION2 0.001 0.023 0.045 0.964     0.002 0.025 0.098 0.922   
CLASSIFICATION3 -0.088 0.039 -2.273 0.023 *   0.006 0.041 0.134 0.893   
CLASSIFICATION4 -0.083 0.061 -1.356 0.175     0.011 0.066 0.168 0.867   
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Figure 70 Distribution of propensity scores (logit scale) both before balancing (top 
panel) and after balancing (bottom panel) 
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Figure 71 Distributions of continuous covariates before balancing (top panel) and after 
balancing (bottom panel) 
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Figure 72 Distributions of categorical covariates before balancing (top panel) and after 
balancing (bottom panel). 
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Fixed-effects model 

The unweighted average treatment effect estimate for the fixed-effects model was 

negative but not significant, (0E = −0.044,7E = 0.065, % = −0.681, " = .496. The 

inverse-propensity weighted average treatment effect estimate was positive, much smaller 

in magnitude, and not significant, (0E = −0.026,7E = 0.061, % = −0.42, " =

.674.	Thus, for the government course sequence the advantage for high retrieval-practice 

(i.e., above the mean) was not significant after covariate balance was achieved. Full 

regression output for these models is contained in Appendix D.  

Random-effects model 

The unweighted average treatment effect for the random-effects model was 

negative and not significant, (0E = −0.057, 7E = 0.047, % = −1.222, " = .243. The 

average treatment-effect estimate for the inverse-propensity weighted model was negative 

and similarly large in magnitude, but not significant, (0E = −0.051,7E = 0.047, % =

1.099, " = .296. Again, for the government course sequence, the effect of high retrieval-

practice  in the prerequisite course was not significant. Full regression output for these 

models is contained in Appendix D. 

Cluster-robust standard errors model 

The unweighted average treatment effect for the model with cluster-robust standard 

errors was negative and smaller in magnitude but not significant, (0E = −0.23, 7E =

0.044, " = 0.608. The average treatment-effect estimate for the inverse-propensity 

weighted model was negative, larger in magnitude, but not significant, (0E =
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−0.034, 7E = 0.047," = 0.121. Full regression output for these models is contained in 

Appendix D. 

 

RESEARCH QUESTION 2 

Pre-requisite course variables predicting subsequent-course success 

Lasso and ordinary least squares (OLS) regressions were performed to assess the 

extent to which prerequisite course features predict the average grade each course’s 

students earned in a subsequent course. All lasso coefficient estimates except fixed effects 

of instructor are included in Table 19 along with associated OLS regression output. The 

initial lasso solution identified a 5-variable solution for predicting subsequent course grade: 

social media (, = 0.042), cumulative exams (, = 0.084), exam dates (, = 0.063), 

flipped classroom (, = 0.019), and number of quizzes (, = 0.002) in the prerequisite 

course all significantly and positively predicted the average grade students from those 

courses went on to earn in their subsequent course. Two additional variables were selected 

that were not pedagogically relevant: year of course (, = −0.138) and whether the course 

was a core course (, = 0.015). Note that lasso is not typically used for inference, and thus 

no hypothesis tests are conducted here. 

Due to slight variations in the optimal regularization parameter selected using 

cross-validation, the entire process was repeated 1000 times, generating distributions for 

each non-zero parameter estimate. These are shown in Figure 73, along with the mean and 

standard deviation of the estimates. The mean of the distribution of each parameter is close 

to the lasso parameter estimates reported above: social media had a mean , of 0.045 (7k =

0.005), cumulative exams had a mean , of 0.096 (7k = 0.010), exam dates had a mean 
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, of 0.075 (7k = 0.007), flipped classroom had a mean , of 0.026 (7k = 0.006), number 

of quizzes had a mean , of 0.002 (7k = 0.0003), and group activities had a mean , of -

0.007, (7k = 0.006). Note that group activities was estimated to be zero in the lasso 

estimates reported above, but upon repeated simulation it has a non-zero (indeed, a 

negative) mean estimate. However, the standard deviation for these estimates is quite large, 

and it can be seen in Figure 73 that the distribution is nontrivially overlapping zero. 

The OLS solution identified only three variables that significantly predictive of 

average subsequent course performance: cumulative final exam (, = 0.739," = .001), 

extra credit (, = −0.308," = .029), and number of quizzes (, = 0.017, " = .03). 

Notably, the lasso and OLS regressions agreed on only a single predictor: the number of 

quizzes in the prerequisite course was significantly and positively related to subsequent-

course performance in both procedures. 

 

Figure 73 Distributions of lasso regression effect estimates after 1000 replications of 
10-fold cross-validation were performed to select the regularization 
parameter. Vertical line indicates zero effect. 
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Table 19 Lasso and OLS regression coefficient estimates 

 

 Lasso 
estimate 

OLS 
estimate SE t p-value  

Instructor effects - - - - -   
Year 0.015 -0.015   0.036 -0.417 0.677   
Online/SMOC - 0.195   0.223 0.875 0.383   
Core Course -0.138 0.066   0.252 0.263 0.793   
Flag Course - 0.152   0.117 1.299 0.197   
Course Level - 0.281   0.211 1.334 0.185   
Office Hours - 0.083   0.103 0.807 0.421   
Reading Acts - 0.163   0.181 0.899 0.371   
Watching Acts - 0.338   0.204 1.656 0.100   
Doing Acts - -0.077   0.277 -0.280 0.780   
Social Media 0.042 0.045   0.213 0.211 0.833   
Community Learning Ops - -0.120   0.118 -1.023 0.308   
SLO-Knowledge - -0.314   0.331 -0.949 0.345   
SLO-Skills - 0.115   0.189 0.609 0.544   
SLO-Social/Emotional - -0.005   0.282 -0.018 0.985   
Course Topics - -0.566 . 0.305 -1.855 0.066   
Dates for Topics - 0.057   0.270 0.213 0.832   
Total Enrollment - 0.000   0.000 0.611 0.543   
Cumulative Exams 0.084 0.308   0.221 1.392 0.167   
Grade Choice - -0.327 . 0.173 -1.884 0.062   
Cumulative Final - 0.739 *** 0.214 3.461 0.001   
Exam Dates 0.063 0.322   0.269 1.198 0.233   
Assignment Dates - -0.136   0.129 -1.052 0.295   
Projects/Presentations - 0.245   0.216 1.135 0.259   
Participation % - 0.002   0.017 0.098 0.922   
Attendance Enforced - 0.332 . 0.188 1.762 0.081   
Flipped Classroom 0.019 0.383 . 0.220 1.742 0.084   
Extra Credit - -0.308 * 0.139 -2.212 0.029   
In-Class Active - 0.001   0.121 0.004 0.997   
Group Activities - -0.371 . 0.193 -1.917 0.058   
Informal RP - 0.067   0.133 0.502 0.616   
Exam # - -0.203   0.183 -1.108 0.270   
Exam % - 0.008   0.011 0.751 0.454   
Quiz # 0.002 0.017 * 0.008 2.198 0.030   
Quiz % - -0.003   0.016 -0.166 0.869   
In-Class Assignment # - -0.009   0.024 -0.349 0.728   
In-Class Assignment % - 0.034   0.030 1.143 0.255   
Homework # - -0.010   0.008 -1.171 0.244   
Homework % - 0.002   0.007 0.333 0.740   
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Chapter Nine:  Discussion Part II 

In Part II of this study, a novel approach—subsequent-course analysis—was 

developed in an effort to connect course-level variables to students’ subsequent learning 

outcomes in related college coursework. In general, this approach uses information from 

course syllabi to identify specific learning activities and teaching practices; it uses 

institutional records to track students’ learning outcomes across specific course sequences; 

it uses propensity-score methods and the potential outcomes framework to ask what 

students’ outcomes would have been if their course sequences had been different; and it 

uses techniques for modeling the correlated nature of observations inherent in the course-

sequence paradigm.  

Based on the overwhelming academic consensus that retrieving information from 

memory benefits long-term retention and transfer of learning, subsequent-course analysis 

was used to formally test the hypothesis that receiving extra retrieval practice in an 

introductory course can improve students’ outcomes in subsequent courses in the same 

discipline, which are presumed to continue to build upon this foundational material. 

Converging lines of evidence—including the treatment effect estimates from the a priori 

model specification—support the conclusion that taking a prerequisite course with many 

opportunities for retrieval practice can improve transfer of learning to subsequent, related 

coursework relative to taking a prerequisite course with few opportunities for retrieval 

practice. These effects were obtained in an observational study using the highest standards 

of statistical control, ensuring that treatment individuals were indistinguishable from 

control individuals in every meaningful way except for their treatment status (i.e., how 

many graded retrieval practice opportunities were offered in their prerequisite course).   
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However, the estimated effects tended to be small, and despite having a large 

sample, statistical significance was sensitive to both model specification and treatment 

operationalization. The discipline of the course sequence appeared to make an important 

difference as well, with the effect appearing strong in the Chemistry sequence, weak in the 

Economics sequence, but nonexistent in the Government sequence. These findings and 

their qualifications are discussed in more detail below. 

It was also hypothesized that of all prerequisite course attributes derived from 

syllabi, those related to retrieval practice and active learning during class-time (e.g., 

number of in-class assignments, description of a flipped classroom) would be most 

predictive of better performance in the subsequent course. This hypothesis received support 

from the foregoing investigation as well: a widely used variable-selection technique from 

machine learning identified a subset of six course features (out of 39) that were most 

predictive of average performance in the next course in the sequence even after controlling 

for individual instructor effects, and three of those—cumulative exams, flipped classroom, 

and number of quizzes—were distinctly related to active learning and spaced retrieval 

practice. Indeed, the strongest effect was that of cumulative exams, one of the few course 

variables that unambiguously incorporates spacing of content. Unexpectedly, having a 

social media page for the course was strongly associated with subsequent course success 

as well, and conscientious instructors (those who provided dates for all exams in their 

syllabi) had students who went on to do better in their subsequent course. At this point, 

these findings are merely associational: an important direction for future research would 

be to subject each of these putative effects to a rigorous subsequent-course analysis to 

discover whether they can be given a causal interpretation. 
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Propensity-score adjustment and covariate balance 

The propensity score models of treatment assignment were successful in achieving 

covariate balance in every case. No adjustments needed to be made to the original additive, 

linear model specification. Specifically, no higher-order terms or interactions needed to be 

added to the propensity-score model to achieve balance. 

In one sense, the propensity score adjustment was crucial: regardless of how the 

treatment effect was operationalized, there were always covariates that were markedly 

unbalanced between the treatment and control groups (something that, with a sample this 

large, we would not expect to see if students were randomly assigned to courses). In every 

case, students who received treatment (i.e., took a high retrieval practice course) had a 

higher predicted probability of doing so based on their background covariates than did 

students who did not receive treatment (i.e., took a low retrieval practice course). This can 

be seen by comparing the distribution of logit propensity scores for treatment and control 

groups (e.g., Figure 46, top panel). If background covariates were indeed independent of 

the type of prerequisite course that students took (as in a randomized experiment), then 

these distributions would be overlapping almost perfectly (i.e., showing no systematic 

deviations in center or spread). Inverse propensity weighting provides a good 

approximation to this ideal situation (Figure 46, bottom panel). 

It is interesting to examine which covariates showed the greatest extent of 

imbalance before propensity-score adjustment. In general, the control group tended to be 

older than the treatment group, to have lower SAT scores, to have had lower high school 

GPAs than their peers, and to be taking the prerequisite course later in college (i.e., less 

likely to be taking it as a Freshman). This suggests that students with higher previous 

academic achievement may be seeking out courses that end up being high in retrieval 
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practice (perhaps due to the professor having a reputation for good teaching), while 

students with lower previous achievement may be choosing courses that happen to be lower 

in retrieval practice (perhaps due to the professor having a reputation for a lighter 

workload). Regardless of these speculations, it is clear that failure to adjust for covariate 

imbalance biases the treatment group in favor of students with higher previous 

achievement. As previous achievement is certainly related to subsequent course 

performance, this represents a serious confound that was obviated by the use of propensity-

score adjustment. 

By subject, the Chemistry course sequence showed greater covariate imbalance 

than either the Economics or the Government course sequence, and the nature of the 

imbalance (e.g., the specific covariates and the direction of the imbalance) often differed 

as well. For example, in the Chemistry sequence, treatment students had more high school 

transfer credits than control students on average, while in the Economics sequence 

treatment students had fewer than control students. As I discuss below, retrieval practice 

may be more important in certain course sequences than in others; to the extent that this is 

true, we would expect to see more imbalance in places where it matters more to course 

difficulty. Recall that the median number of graded retrieval practice elements was 33 in 

the Chemistry prerequisite course CH 301 (M = 26.2, SD = 12.4), but only 9 in the 

Economics prerequisite ECO 304K (M = 8.51, SD = 5.15) and 10 in the Government 

prerequisite course GOV 310L (M = 8.22, SD = 3.77). Note the greater variability in the 

Chemistry course as well. 
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The effect of retrieval practice on subsequent course performance 

Overall average treatment effect estimates from inverse propensity-score weighted 

fixed- and random-effects models ranged from 0.057 to 0.067 and were also very 

comparable in their standard errors (see Table 11); using a median split, both estimates 

(fixed, ATE = 0.060; random, ATE = 0.067) were statistically significant. Here, taking a 

course that is above the median in retrieval practice opportunities is estimated to raise 

students’ subsequent-course grades by 0.060 to 0.067 standard deviations, a small effect 

that could move a student from the 50th percentile to the 52nd. However, when a mean 

split was used to assess robustness, the effect was only significant for the fixed-effects 

model. Estimates from the cluster-robust standard error models ranged from 0.018 to 0.035 

and had correspondingly smaller standard errors; they were not significant using either the 

mean or median split, though they approached significance in the latter. The median-split 

operationalization produced slightly larger ATE estimates than did the mean split: 

estimates from the fixed- and random-effects models were both significant using a median 

split, while only the fixed-effect model estimate was significant using the mean split 

(indeed, this was found to be the case across the board). Because the effects were relatively 

small and sensitive to modeling decisions, one should interpret these findings as tentative 

and as requiring further investigation. 

The estimated effects in Chemistry tended to be larger than the overall estimates; 

using a median split, estimates from the fixed- and random effects models were 0.071 and 

0.150, respectively, though only the former reached significance. The estimate from the 

cluster-robust standard errors model was 0.063 and was also significant. The estimates 

obtained using a mean split were larger still: the estimate from the fixed-effects model was 

0.10 and the estimate from the random-effects model was 0.24, and both were significant. 
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These estimates suggest that the effect of retrieval practice on subsequent-course 

performance is more pronounced in the Chemistry course sequence than in those of other 

disciplines. 

This speculation receives support from the less compelling treatment effects 

observed in the Economics and Government course sequences. In the Economics sequence, 

treatment effect estimates were almost as large as those in Chemistry, but only a single 

estimate was statistically significant. However, in the Government sequence, treatment 

effect estimates were much closer to zero (indeed, some were negative) and none of them 

reached significance.  

The Chemistry course sequence consists of prerequisite course CH 301 (Principles 

of Chemistry I) and subsequent course CH 302 (Principles of Chemistry II): the first course 

covers topics such as atomic theory, bonding, and intermolecular forces, and the second 

course builds directly upon them with topics such as thermodynamics, chemical equilibria, 

and reaction kinetics. Because an understanding of the prerequisite course topics is a 

requirement for understanding topics covered in the subsequent course, the effects of 

retrieval practice on retention and transfer may take on greater importance. 

The Economics course sequence consists of ECO 304K (Microeconomics) and 

ECO 304L (Macroeconomics). Though credit for the former course is a university 

prerequisite for enrollment in the latter, the subject matter may not build in the same way 

as it does in the Chemistry sequence. However, certain foundational concepts in the 

prerequisite Microeconomics course (e.g., supply and demand curves) certainly come up 

again in the Macroeconomics course (e.g., aggregate supply and demand). Indeed, because 
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the effect estimates were comparable to those in Chemistry, perhaps failure to achieve 

significance was due to a relatively smaller sample of Economics courses. 

The Government course sequence consists of GOV 310L (American Government) 

and GOV12L (Issues and Policies in American Government). In contrast to the previous 

two sequences, the Government sequence is required for all undergraduate students at UT 

Austin. While the description in the official course headnote states that GOV 312L 

“assumes basic knowledge of government from GOV 310L,” the description of the 

prerequisite course focuses more on issues related to Texas state and local government. 

Perhaps the failure to observe any significant effect of retrieval practice in this sequence is 

on account of the material in each course being relatively more independent.  

To speculate further, perhaps the variability in effect estimates observed between 

disciplines is the result of differences in dosage rather than differences in subject matter. 

Recall that the first course in the Chemistry sequence gave a total of 26 quizzes and exams 

on average, over three times as many as were given in the average Government prerequisite 

course. Furthermore, in the Chemistry prerequisite course, the standard deviation was 12.4, 

relative to only 3.77 in the Government prerequisite course. Perhaps an effect would 

emerge in the Government sequence if there was greater variability in the number of 

retrieval practice opportunities offered. As it stands though, it is not possible to disentangle 

whether the differential effectiveness is attributable to differences in the course content, to 

differences in the treatment dosage, or to something else entirely. Future studies may 

examine the effect of such course-level retrieval practice variables in domains that more 

explicitly build on each other, such as mathematics and languages. 
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Neither is it possible, with the data at hand, to tease apart the motivational effects 

of frequent quizzing and testing from the strictly cognitive mnemonic effects. Perhaps the 

benefits of retrieval practice are mediated by student motivation: a course in which students 

have to study repeatedly for quizzes and tests may cause those students to be more 

conscientious about their coursework in general (e.g., “I’m already at the library with my 

bookbag open, so I guess I’ll go ahead and study for my other courses too”). Putting this 

question to the test would require additional data beyond those I was given access too and 

represents an important direction for future study. Other questions that warrant future study 

include whether or not the effects observed and reported herein generalize to smaller 

courses, upper division courses, or courses offered at different institutions. Furthermore, it 

would be interesting to examine the effect of certain course-level variables on student 

evaluations of teaching. It is my intention to address these questions in future research. 

Overall, this study has contributed much-needed information about course-level 

variables in high-enrollment colleges courses at a large public university, shedding light 

on the extent to which effective learning practices are being used and what other course 

variables make the difference when it comes to preparing students for success in their 

subsequent coursework. The findings presented herein have the potential to directly 

improve teaching at UT Austin by spurring the development of new resources for faculty 

that support the incorporation of spaced retrieval practice into their courses. One idea is to 

develop a syllabus template for faculty members to use, with presets that nudge them 

toward best practices in subtle ways. For example, the template could include more fields 

for exams and quizzes by default, or it could make certain best-practices (e.g., cumulative 

assignments, in-class activities, class social media involvement) required rather than 
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optional. Regardless of the specific features, the goal remains the same: to encourage 

instructors to reflect more deeply on their course design and to adopt practices that will 

improve learning outcomes for their students long after their final grades are submitted. 
  



 
 
 

252 

Appendix A 

Table A1 Complete syllabus codebook  

 
Variable Definition Code Format 

Course 
Name of course as it appears 
in catalogs, course schedules, 
and student records 

Abbreviation and Course 
Number (e.g., GOV 312L) Entry 

Department Department offering credit 
for course 

Department name (e.g., The 
Government course 

sequence) 
Entry 

Semester Semester course is offered Year, Semester (e.g., 2015, 
Fall) Entry 

Unique Number 
Unique number of course as 
it appears in course schedule 
and student records 

5 digit number (e.g., 37715) Entry 

Course Format 
Indication that the course is 
face to face, hybrid, or online 
course 

F2F/Hybrid/Online/SMOC Forced 
choice 

Room Number Location of face to face 
course meetings 

Building and Room 
Number (e.g., BUR 106) Entry 

Multiple Sections 
Indication that course meets 
simultaneously with multiple 
sections/unique numbers 

Yes/No Forced 
choice 

Multiple Sections - other 
unique numbers 

List of additional unique 
numbers associated with 
course 

5 digit number, 5 digit 
number, … Entry 

Class Meetings - Days Days that course meets MWF, TTh, MTWThF, etc. Entry 

Class Meetings - Times Time of day that course 
meets 

8:00am-9:30am, 12:30pm-
2:30pm, etc. Entry 
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Cultural Diversity in the 
United States Flag 

Indication that course carries 
the cultural diversity in the 
United States flag 

Yes/No Forced 
choice 

Ethics and Leadership 
Flag 

Indication that course carries 
the ethics and leadership flag Yes/No Forced 

choice 

Global Cultures Flag Indication that course carries 
the global cultures flag Yes/No Forced 

choice 

Independent Inquiry Flag Indication that course carries 
the independent inquiry flag Yes/No Forced 

choice 

Quantitative Reasoning 
Flag 

Indication that course carries 
the quantitative reasoning 
flag 

Yes/No Forced 
choice 

Writing Flag Indication that course carries 
the writing flag Yes/No Forced 

choice 

Core Course 
Indication that course 
satisfies a core curriculum 
requirement 

Yes/No Forced 
choice 

Team-taught 
Indication that more than one 
instructor is involved in 
teaching the course 

Yes/No Forced 
choice 

Instructor Instructor of record teaching 
the course 

Last Name, First Name 
(e.g., Pennebaker, James) Entry 

Co-instructor 

Additional instructor of 
record teaching the course; if 
no co-instructor this field 
will be left blank 

Last Name, First Name 
(e.g., Pennebaker, James) 

(Leave blank if no co-
instructor) 

Entry 

Instructor Office Hours Instructor time devoted to 
office hours 

Total number of hours 
(enter as a number) 

Quantitative 
entry 

# of TAs Number of TAs assigned to 
support the course 

Total number of TAs; if 
zero, enter "0" 

Quantitative 
entry 

TA Office Hours TA time devoted to office 
hours 

Total number of hours 
(enter as a number) 

Quantitative 
entry 
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Course Resources: 
Reading 

Indication that course has 
required reading materials 
outside of class time 

Yes/No Forced 
choice 

Reading Materials 

List of the required reading 
materials in the course (e.g., 
textbook, readings posted in 
LMS, etc.) 

List of materials Open-ended 
entry 

Course Resources: 
Watching 

Indication that course has 
required watching activities 
outside of class time 

Yes/No Forced 
choice 

Watching Activities 

List of required watching 
activities in the course (e.g., 
recorded lectures, YouTube 
videos, TED talks, etc.) 

List of activities Open-ended 
entry 

Course Resources: Doing 
Indication that course has 
required practice activities 
outside of class time 

Yes/No Forced 
choice 

Doing Activities 

List of required practice 
activities in the course (e.g., 
Quest, textbook website, 
Canvas/Blackboard, iClicker, 
etc.) 

List of activities Open-ended 
entry 

Social Media 
Course social media 
resources are listed in 
syllabus 

Yes/No Forced 
choice 

Learning Management 
System 

Course learning management 
system (LMS) such as 
Canvas, Blackboard, Moodle, 
etc., is listed in the syllabus 

Yes/No Forced 
choice 

Community Learning 
Opportunities 

Community learning 
opportunities (e.g., TA-led 
sessions, exam-review 
sessions, study groups, 
Sanger Learning Center 
resources, etc.) are listed in 
the syllabus 

Yes/No Forced 
choice 
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Stated Learning 
Objectives - Knowledge 

Knowledge-level learning 
objectives are clearly listed 
in the syllabus (e.g., topics to 
be learned within the course; 
knowledge to be gained as a 
result of taking the course, 
etc.) 

Yes/No Forced 
choice 

Suggested Learning 
Objectives - Knowledge 

Knowledge-level learning 
objectives are NOT clearly 
listed in the syllabus, but 
language appears in the 
syllabus that suggest 
knowledge-level learning 
objectives are associated with 
the course 

Yes/No; N/A if previous 
code is "Yes" 

Forced 
choice 

Stated Learning 
Objectives - Skills 

Skill-level learning 
objectives are clearly listed 
in the syllabus (e.g., 
quantitative reasoning skills, 
critical thinking skills, 
procedural skills associated 
with discipline, etc.) 

Yes/No Forced 
choice 

Suggested Learning 
Objectives - Skills 

Skill-level learning 
objectives are NOT clearly 
listed in the syllabus, but 
language appears in the 
syllabus that suggest skill-
level learning objectives are 
associated with the course 

Yes/No; N/A if previous 
code is "Yes" 

Forced 
choice 

Stated Learning 
Objectives - Socio-

emotional 

Socio-emotional learning 
objectives are clearly listed 
in the syllabus (e.g., 
teamwork/collaborative 
learning skills, self-
awareness, self-management, 
social awareness, responsible 
decision-making, etc.) 

Yes/No Forced 
choice 

Suggested Learning 
Objectives - Socio-

emotional 

Socio-emotional learning 
objectives are NOT clearly 
listed in the syllabus, but 
language appears in the 
syllabus that suggest socio-
emotional learning objectives 

Yes/No; N/A if previous 
code is "Yes" 

Forced 
choice 
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are associated with the 
course 

List of Course Topics Course topics are listed in the 
syllabus Yes/No Forced 

choice 

Dates for Course Topics 
Dates for covering course 
topics are listed in the 
syllabus 

Yes/No Forced 
choice 

Number of Exams 
Number of exams/tests given 
in the course (excluding final 
exam and quizzes) 

Total number of 
exams/tests 

Quantitative 
entry 

Exams Grade % 

The percentage of final 
course grade that is 
accounted for by 
performance on exams/tests 

Percentage of grade Quantitative 
entry 

Multiple Choice Exam 
Items 

Exams contain multiple 
choice or matching items Yes/No/Unclear Forced 

choice 

Short Answer Exam 
Items 

Exams contain open-ended 
short answer items Yes/No/Unclear Forced 

choice 

Essay Exam Items Exams contain essay 
questions Yes/No/Unclear Forced 

choice 

Cumulative Exams 
Exams/tests in the course are 
described as cumulative in 
the syllabus 

Yes/No/Unclear Forced 
choice 

Drop Lowest Exam Score 

Students can drop their 
lowest exam/text score (e.g., 
lowest exam score will not be 
counted towards final course 
grade) 

Yes/No/Unclear Forced 
choice 

Re-test Opportunity 
Students have the 
opportunity to re-take exams 
to improve their score 

Yes/No/Unclear Forced 
choice 

Final Exam Grade % The percentage of final 
course grade that is 
accounted for by 

Percentage of grade (if no 
final exam, enter 0%) 

Quantitative 
entry 
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performance on the final 
exam 

Multiple Choice Final 
Exam Items 

Final exam contain multiple 
choice or matching items Yes/No/Unclear Forced 

choice 

Short Answer Final Exam 
Items 

Final exam contain open-
ended short answer items Yes/No/Unclear Forced 

choice 

Essay Final Exam Items Final exam contain essay 
questions Yes/No/Unclear Forced 

choice 

Cumulative Final Exam The final exam is described 
as cumulative in the syllabus Yes/No/Unclear Forced 

choice 

Alternative Assessment 
Option Weighting 

Students have options in how 
their final grade is calculated 
(e.g., optional final exam, 
lowest test score counts for a 
less %, exams are worth 
increasing % of final grade 
further into the course, etc.) 

Yes/No/Unclear Forced 
choice 

Calendar of Exam Dates 
Indication that the syllabus 
has a calendar that includes 
all exam dates 

Yes/No Forced 
choice 

Calendar of All 
Assessments/Assignments 

with Due Dates 

Indication that the syllabus 
has a calendar that includes 
all assessments/assignments 

Yes/No Forced 
choice 

Number of Quizzes Number of quizzes (e.g., 
short graded assessments) Total number of quizzes Quantitative 

entry 

Quiz Grade % 

The percentage of final 
course grade that is 
accounted for by 
performance on quizzes; if 
not final exam exists in the 
course record 0% 

Percentage Quantitative 
entry 

Multiple Choice Quiz 
Items 

Quizzes contain multiple 
choice or matching items Yes/No/Unclear Forced 

choice 
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Short Answer Quiz Items Quizzes contain open-ended 
short answer items Yes/No/Unclear Forced 

choice 

Quiz Delivery (Online or 
Paper) 

Format for administering 
quizzes Online/Paper/Both/Unclear Forced 

choice 

Number of In-Class 
Assignments 

Number of in-class 
assignments (e.g., work 
completed during class) 

Total number of 
assignments 

Quantitative 
entry 

In-Class Assignment 
Grade % 

The percentage of final 
course grade that is 
accounted for by 
performance on in-class 
assignments 

Percentage Quantitative 
entry 

Types of In-Class 
Assignments 

List of the in-class 
assignments (e.g., problem-
solving activities, writing 
activities, etc.) 

List of assignments Open-ended 
entry 

Group Assignments 
Assignments completed in 
pairs or in groups are counted 
toward course grade 

Yes/No/Unclear Forced 
choice 

In-class Active Learning 

Evidence of active learning 
and student engagement is 
listed in the syllabus (e.g., 
group discussions, iClicker 
questioning, group or 
individual problem-solving, 
student-led activities, etc.) 

Yes/No/Unclear Forced 
choice 

Types of In-class Active 
Learning 

List of the types of in-class 
active learning mentioned in 
the syllabus 

List of types of in-class 
active learning 

Open-ended 
entry 

Retrieval Practice 

Evidence of retrieval practice 
opportunities for students is 
listed in the syllabus (e.g., 
practice/ungraded quizzes, 
iClicker questions during 
class, pop quizzes, practice 
tests, copies of old exams 
etc.) 

Yes/No Forced 
choice 



 
 
 

259 

Types of Retrieval 
Practices 

List of the types of retrieval 
practices mentioned in the 
syllabus 

List of retrieval practices Open-ended 
entry 

Projects or Presentations 
Assignments in the form of 
projects or presentations exist 
in the course 

Yes/No Forced 
choice 

Lab or Breakout Session 

There is a required lab or TA 
session associated with the 
course (e.g., discussion 
section that meets for 1 hour 
a week) 

Yes/No Forced 
choice 

Participation % of grade 

The percentage of final 
course grade that is 
accounted for by 
participation during in-class 
activities 

Percentage Quantitative 
entry 

Attendance Requirement 
Enforced 

Attendance requirement is 
enforced in the classroom 
(e.g., "TAs will take 
attendance," "iClicker 
responses will mark 
attendance and count towards 
participation," etc.) 

Yes/No Forced 
choice 

# HW Assignments 

Number of homework 
assignments (graded work 
completed outside of class) 
in the course 

Total number of HW 
assignments 

Quantitative 
entry 

HW Assignments Grade 
% 

The percentage of final 
course grade that is 
accounted for by 
performance on homework 
assignments 

Percentage Quantitative 
entry 

Types of HW 
Assignments 

List of the types of 
homework assignments (e.g., 
problems to solve, writing 
assignment, presentation, 
discussion post, etc.) 

List of assignments Open-ended 
entry 



 
 
 

260 

Flipped Classroom 
The course is described as a 
"flipped classroom" in the 
course syllabus 

Yes/No Forced 
choice 

Extra Credit Extra credit opportunities are 
listed in the course sylalbus Yes/No Forced 

choice 

Extra Credit Points 
Number of extra credit points 
available to earn in the 
course 

Number of points Quantitative 
entry 

Syllabus Pages Number of pages of the 
syllabus Number of pages Quantitative 

entry 

Syllabus Word Count Number of words in the 
syllabus Number of words Quantitative 

entry 

Notes 
Anything interesting or 
confusing about the course to 
make note of 

Enter any notes regarding 
syllabus data that may not 
have been captured by the 

coding scheme 

Open-end 
entry 

Learning Objectives 

Cut and paste the learning 
objectives/course 
goals/outcomes listed in the 
syllabus here 

List of learning objectives Text entry 
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Appendix B 
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Table B1 Correlation coefficients for all course variables. 
  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
1 Year 1.00 - - - - - - - - - - - - - - - - - - - 
2 Online/SMOC 0.36 1.00 - - - - - - - - - - - - - - - - - - 
3 Core Course 0.05 0.01 1.00 - - - - - - - - - - - - - - - - - 
4 Flag Course 0.21 -0.13 0.50 1.00 - - - - - - - - - - - - - - - - 
5 Office Hours -0.03 -0.03 0.26 -0.05 1.00 - - - - - - - - - - - - - - - 
6 Reading Acts -0.03 0.53 -0.34 -0.44 -0.04 1.00 - - - - - - - - - - - - - - 
7 Watching Acts 0.08 0.12 0.19 0.04 0.03 -0.03 1.00 - - - - - - - - - - - - - 
8 Doing Acts 0.16 0.14 -0.05 0.15 -0.19 -0.10 0.20 1.00 - - - - - - - - - - - - 
9 Social Media 0.26 0.26 -0.24 -0.16 0.07 -0.14 0.07 0.23 1.00 - - - - - - - - - - - 

10 Community Learn Ops 0.26 0.11 0.16 0.17 -0.02 -0.33 -0.02 0.28 0.55 1.00 - - - - - - - - - - 
11 SLO-Knowledge 0.04 0.03 -0.20 -0.19 0.14 0.26 0.27 0.14 0.18 0.04 1.00 - - - - - - - - - 
12 SLO-Skills 0.09 -0.09 0.10 0.10 0.01 0.02 0.04 0.22 -0.05 0.11 0.68 1.00 - - - - - - - - 
13 SLO-Social/Emotional 0.14 0.00 0.31 0.10 -0.02 0.21 0.30 0.27 -0.25 0.00 0.52 0.71 1.00 - - - - - - - 
14 Course Topics -0.02 -0.09 -0.10 0.02 0.02 0.12 0.20 -0.04 -0.04 -0.09 0.24 0.21 0.17 1.00 - - - - - - 
15 Dates for Topics -0.12 0.00 -0.02 0.01 0.07 0.25 0.25 -0.04 -0.18 -0.23 0.24 0.02 0.17 0.88 1.00 - - - - - 
16 Total Enrollment 0.07 0.39 0.22 0.08 -0.03 0.00 0.16 0.05 0.20 0.07 -0.05 -0.05 -0.02 0.08 0.12 1.00 - - - - 
17 Cumulative Exams -0.07 -0.41 -0.05 -0.14 0.12 -0.15 -0.25 -0.12 0.08 0.14 -0.19 0.01 0.00 -0.08 -0.22 -0.14 1.00 - - - 
18 Grade Choice -0.06 -0.25 0.10 -0.11 0.30 -0.49 -0.30 -0.01 0.07 0.25 -0.12 0.22 -0.10 -0.19 -0.34 0.05 0.34 1.00 - - 
19 Cumulative Final 0.00 -0.27 0.05 0.12 0.12 -0.42 -0.21 0.11 0.03 0.18 -0.18 0.26 -0.11 -0.13 -0.42 -0.06 0.18 0.56 1.00 - 
20 Exam Dates 0.04 0.05 0.02 0.00 0.18 -0.10 -0.04 0.07 0.24 0.24 0.06 0.17 0.10 0.62 0.54 0.07 0.29 0.25 -0.05 1.00 
21 Assignment Dates 0.00 0.23 -0.03 -0.18 0.27 0.33 0.16 -0.16 -0.03 -0.25 0.11 -0.14 0.00 0.56 0.70 0.14 -0.19 -0.08 -0.26 0.53 
22 Projects/Presentations -0.13 -0.26 -0.04 0.01 -0.05 0.18 0.19 0.36 -0.21 -0.27 0.05 0.09 0.17 0.13 0.21 -0.16 -0.12 -0.23 0.02 -0.26 
23 Participation % 0.07 0.01 0.00 0.17 -0.35 0.07 0.01 0.11 -0.18 0.06 -0.01 -0.01 0.16 0.05 0.11 -0.07 -0.20 -0.27 -0.16 -0.07 
24 Attendance Enforced 0.07 -0.01 -0.03 0.01 -0.18 0.34 -0.24 -0.06 -0.16 0.01 0.24 0.10 0.19 0.09 0.21 -0.10 -0.14 -0.31 -0.15 -0.12 
25 Flipped Classroom 0.07 -0.57 0.07 -0.02 0.01 -0.48 0.31 0.30 0.14 0.31 0.21 0.22 0.31 -0.06 -0.15 -0.09 0.40 0.34 0.22 0.00 
26 Extra Credit -0.04 -0.26 -0.23 -0.14 -0.07 -0.20 0.06 0.06 0.28 0.10 0.21 0.07 0.13 -0.05 -0.06 0.02 0.04 0.22 0.07 0.04 
27 In-Class Active 0.11 -0.42 0.15 0.18 -0.16 -0.34 -0.15 0.14 -0.15 0.35 0.06 0.17 0.05 -0.03 -0.10 -0.22 0.07 0.18 0.20 -0.15 
28 Group Activities 0.07 -0.26 0.05 0.19 -0.14 0.09 0.12 0.18 0.05 0.18 0.25 0.11 0.21 0.19 0.25 -0.17 -0.08 -0.40 -0.12 -0.19 
29 Informal RP 0.10 -0.30 0.01 0.03 -0.07 -0.37 -0.18 0.14 0.08 0.40 -0.04 0.18 -0.04 -0.05 -0.30 -0.13 0.33 0.40 0.35 0.06 
30 Credit Hours 0.01 0.05 0.30 0.09 0.03 0.02 0.07 -0.03 0.05 0.04 -0.10 -0.09 -0.03 0.02 -0.01 0.10 0.14 0.03 0.07 -0.06 
31 Course Level 0.02 -0.10 -0.67 -0.48 0.05 0.23 -0.07 0.04 0.21 -0.11 0.05 -0.07 -0.03 0.03 -0.12 -0.15 0.22 0.14 0.18 -0.06 
32 Exam # -0.02 -0.14 0.04 -0.10 0.29 -0.30 -0.32 -0.13 -0.01 0.11 -0.13 0.06 -0.21 -0.11 -0.20 -0.08 0.54 0.76 0.31 0.31 
33 Exam % -0.09 -0.39 -0.06 -0.10 0.16 -0.31 -0.36 -0.50 0.02 0.02 -0.21 -0.01 -0.23 0.07 -0.14 -0.10 0.66 0.54 0.26 0.30 
34 Quiz # 0.12 0.20 0.12 0.02 0.00 -0.14 0.12 0.15 0.15 0.18 0.10 0.13 0.07 -0.08 -0.04 0.15 -0.17 0.07 0.11 -0.02 
35 Quiz % 0.06 0.32 0.08 0.00 -0.12 0.09 0.34 0.12 0.13 -0.02 0.16 0.03 0.12 0.04 0.11 0.27 -0.44 -0.33 -0.11 -0.13 
36 In-Class Assignment # 0.03 -0.03 0.06 -0.09 0.16 0.01 0.02 -0.07 -0.04 0.11 0.12 0.08 0.08 -0.01 0.02 -0.03 0.09 0.15 0.05 0.08 
37 In-Class Assignment % 0.06 0.04 0.02 -0.03 0.06 0.12 -0.01 -0.07 0.05 0.11 0.16 0.04 -0.04 -0.02 0.05 -0.05 -0.01 -0.03 -0.04 0.01 
38 Homework # 0.12 0.16 -0.02 0.16 -0.03 -0.20 -0.15 0.74 0.17 0.20 0.02 0.07 0.09 -0.04 -0.05 0.02 -0.18 0.15 0.21 0.13 
39 Homework % 0.02 0.25 0.01 0.09 0.00 0.27 0.18 0.64 -0.11 -0.08 0.11 -0.02 0.17 -0.15 0.08 -0.02 -0.49 -0.38 -0.20 -0.26 
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  21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 
1 Year - - - - - - - - - - - - - - - - - - - 
2 Online/SMOC - - - - - - - - - - - - - - - - - - - 
3 Core Course - - - - - - - - - - - - - - - - - - - 
4 Flag Course - - - - - - - - - - - - - - - - - - - 
5 Office Hours - - - - - - - - - - - - - - - - - - - 
6 Reading Acts - - - - - - - - - - - - - - - - - - - 
7 Watching Acts - - - - - - - - - - - - - - - - - - - 
8 Doing Acts - - - - - - - - - - - - - - - - - - - 
9 Social Media - - - - - - - - - - - - - - - - - - - 

10 Community Learn Ops - - - - - - - - - - - - - - - - - - - 
11 SLO-Knowledge - - - - - - - - - - - - - - - - - - - 
12 SLO-Skills - - - - - - - - - - - - - - - - - - - 
13 SLO-Social/Emotional - - - - - - - - - - - - - - - - - - - 
14 Course Topics - - - - - - - - - - - - - - - - - - - 
15 Dates for Topics - - - - - - - - - - - - - - - - - - - 
16 Total Enrollment - - - - - - - - - - - - - - - - - - - 
17 Cumulative Exams - - - - - - - - - - - - - - - - - - - 
18 Grade Choice - - - - - - - - - - - - - - - - - - - 
19 Cumulative Final - - - - - - - - - - - - - - - - - - - 
20 Exam Dates - - - - - - - - - - - - - - - - - - - 
21 Assignment Dates 1.00  - - - - - - - - - - - - - - - - - 
22 Projects/Presentations 0.03 1.00 - - - - - - - - - - - - - - - - - 
23 Participation % 0.06 0.22 1.00 - - - - - - - - - - - - - - - - 
24 Attendance Enforced 0.25 0.25 0.61 1.00 - - - - - - - - - - - - - - - 
25 Flipped Classroom -0.17 0.14 0.04 0.03 1.00 - - - - - - - - - - - - - - 
26 Extra Credit -0.06 -0.16 -0.12 -0.07 0.38 1.00 - - - - - - - - - - - - - 
27 In-Class Active -0.25 0.14 0.20 0.24 0.48 0.11 1.00 - - - - - - - - - - - - 
28 Group Activities 0.00 0.57 0.28 0.42 0.26 -0.03 0.50 1.00 - - - - - - - - - - - 
29 Informal RP -0.29 -0.13 0.02 0.01 0.49 0.21 0.73 -0.04 1.00 - - - - - - - - - - 
30 Credit Hours -0.04 -0.03 -0.22 0.04 0.06 0.18 0.12 -0.01 0.21 1.00 - - - - - - - - - 
31 Course Level 0.02 -0.05 -0.28 -0.18 0.22 0.50 -0.15 -0.14 0.12 0.00 1.00 - - - - - - - - 
32 Exam # -0.04 -0.29 -0.27 -0.29 0.13 0.05 0.08 -0.35 0.24 0.16 0.04 1.00 - - - - - - - 
33 Exam % -0.10 -0.39 -0.36 -0.33 0.07 0.14 -0.04 -0.31 0.19 0.13 0.20 0.67 1.00 - - - - - - 
34 Quiz # -0.12 -0.01 -0.04 0.10 0.12 -0.03 0.17 0.00 0.13 0.02 -0.13 -0.06 -0.26 1.00 - - - - - 
35 Quiz % 0.01 -0.03 -0.04 -0.04 -0.07 0.01 -0.08 -0.04 -0.12 -0.02 -0.06 -0.46 -0.58 0.48 1.00 - - - - 
36 In-Class Assignment # 0.12 -0.03 -0.05 0.15 0.20 0.02 0.19 0.07 0.16 0.04 -0.02 0.08 -0.04 0.06 -0.08 1.00 - - - 
37 In-Class Assignment % 0.04 0.04 -0.05 0.23 0.08 -0.11 0.19 0.21 0.04 0.06 -0.21 -0.07 -0.16 0.00 -0.07 0.49 1.00 - - 
38 Homework # -0.02 -0.04 0.01 0.01 0.15 0.06 0.10 -0.05 0.12 -0.02 0.10 0.02 -0.26 0.15 0.06 0.03 -0.03 1.00 - 
39 Homework % 0.07 0.47 0.20 0.18 -0.10 -0.12 -0.02 0.25 -0.22 -0.11 -0.09 -0.45 -0.77 0.00 0.08 -0.03 -0.04 0.38 1.00 
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Appendix C 

Table C1 Overall mean differences and standardized mean differences for all 
covariates before and after propensity score adjustment (median split) 

Variable Unadjusted  Adjusted 
Mdiff Mdiff (standardized)  Mdiff Mdiff (standardized) 

            
SAT_equivalent 11.3758 0.0819   -2.6617 -0.0192 
hspct2 0.0063 0.0568   -0.0015 -0.0136 
transferredhours -0.4833 -0.0387   0.0927 0.0074 
age -0.3535 -0.4399   0.0276 0.0343 
sex_M -0.0135 -0.0136   0.0040 0.0040 
derivation_2eHB 0.0026 0.0025   -0.0005 -0.0005 
derivation_AI -0.0001 -0.0002   0.0000 0.0000 
derivation_A 0.0349 0.0349   -0.0040 -0.0039 
derivation_B2eH -0.0013 -0.0013   -0.0006 -0.0006 
derivation_B -0.0041 -0.0041   0.0015 0.0015 
derivation_F -0.0049 -0.0048   0.0020 0.0020 
derivation_HPI -0.0012 -0.0012   -0.0002 -0.0002 
derivation_H -0.0142 -0.0141   0.0052 0.0051 
derivation_U 0.0022 0.0022   0.0000 0.0000 
derivation_W -0.0138 -0.0138   -0.0034 -0.0034 
majorschool_2 0.0269 0.0270   -0.0042 -0.0043 
majorschool_3 -0.0048 -0.0048   0.0008 0.0007 
majorschool_4 -0.0291 -0.0291   0.0013 0.0013 
majorschool_5 -0.0014 -0.0014   0.0021 0.0022 
majorschool_9 -0.0014 -0.0013   -0.0002 -0.0002 
majorschool_C -0.0244 -0.0244   -0.0003 -0.0003 
majorschool_E 0.0434 0.0434   -0.0014 -0.0014 
majorschool_J -0.0041 -0.0041   0.0009 0.0009 
majorschool_L 0.0198 0.0198   -0.0007 -0.0007 
majorschool_N -0.0005 -0.0005   0.0002 0.0002 
majorschool_S -0.0034 -0.0034   0.0002 0.0002 
majorschool_U -0.0211 -0.0211   0.0014 0.0014 
motheredlevel_0 -0.0071 -0.0071   0.0015 0.0015 
motheredlevel_1 -0.0057 -0.0057   0.0006 0.0006 
motheredlevel_2 -0.0037 -0.0037   0.0010 0.0010 
motheredlevel_3 -0.0072 -0.0073   0.0038 0.0038 
motheredlevel_4 0.0045 0.0045   -0.0068 -0.0068 
motheredlevel_5 0.0156 0.0156   -0.0025 -0.0024 
motheredlevel_6 0.0042 0.0042   0.0028 0.0028 
motheredlevel_U -0.0004 -0.0004   -0.0003 -0.0003 
fatheredlevel_0 -0.0048 -0.0049   0.0010 0.0010 
fatheredlevel_1 -0.0061 -0.0061   0.0005 0.0006 
fatheredlevel_2 -0.0048 -0.0048   0.0020 0.0020 
fatheredlevel_3 0.0002 0.0002   0.0032 0.0032 
fatheredlevel_4 -0.0097 -0.0097   -0.0063 -0.0064 
fatheredlevel_5 0.0260 0.0260   -0.0009 -0.0009 
fatheredlevel_6 0.0033 0.0033   -0.0005 -0.0005 
fatheredlevel_U -0.0041 -0.0040   0.0010 0.0010 
CLASSIFICATION_1 0.1522 0.1522   -0.0076 -0.0076 
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CLASSIFICATION_2 -0.0821 -0.0821   0.0003 0.0003 
CLASSIFICATION_3 -0.0553 -0.0553   0.0031 0.0031 
CLASSIFICATION_4 -0.0148 -0.0148   0.0042 0.0042 
            

 

Table C2 Variance ratios and K–S statistics for continuous covariates (median split) 

Variable 
Unadjusted   Adjusted 

Variance ratio K–S statistic   Variance ratio K–S statistic 

SAT_equivalent 1.1771 0.0456  1.0677 0.0177 
hspct2 1.154 0.0362  1.075 0.0156 
transferredhours 1.0643 0.0168  1.0481 0.0072 
age 1.6593 0.2169   1.1245 0.0340 
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Table C3 Overall mean differences and standardized mean differences for all 
covariates before and after propensity score adjustment (mean split) 

Variable Unadjusted   Adjusted 
Mdiff Mdiff (standardized)   Mdiff Mdiff (standardized) 

            
SAT_equivalent 11.8997 0.0844   -0.1513 -0.0011 
hspct2 0.0079 0.0704   0.0001 0.0006 
transferredhours -0.6893 -0.0547   -0.0226 -0.0018 
age -0.1097 -0.1298   -0.0016 -0.0018 
sex_M -0.0097 -0.0097   -0.0009 -0.0010 
derivation_2eHB 0.0018 0.0018   -0.0001 -0.0001 
derivation_AI -0.0011 -0.0012   -0.0001 0.0000 
derivation_A 0.0584 0.0584   0.0001 0.0001 
derivation_B2eH 0.0018 0.0017   0.0001 0.0001 
derivation_B 0.0007 0.0008   0.0000 0.0001 
derivation_F -0.0050 -0.0050   -0.0001 -0.0001 
derivation_HPI -0.0016 -0.0016   -0.0001 -0.0001 
derivation_H -0.0146 -0.0146   0.0001 0.0001 
derivation_U 0.0012 0.0012   0.0000 0.0001 
derivation_W -0.0415 -0.0415   -0.0002 -0.0001 
majorschool_2 -0.0202 -0.0202   -0.0005 -0.0004 
majorschool_3 -0.0089 -0.0089   0.0000 0.0000 
majorschool_4 0.0109 0.0108   -0.0001 -0.0001 
majorschool_5 -0.0073 -0.0073   0.0000 0.0000 
majorschool_9 -0.0002 -0.0003   0.0000 0.0000 
majorschool_C -0.0104 -0.0103   -0.0001 -0.0001 
majorschool_E 0.0688 0.0688   0.0008 0.0008 
majorschool_J 0.0023 0.0024   0.0000 0.0000 
majorschool_L -0.0080 -0.0080   -0.0001 -0.0002 
majorschool_N -0.0012 -0.0012   0.0000 0.0000 
majorschool_S -0.0034 -0.0033   0.0000 0.0000 
majorschool_U -0.0224 -0.0224   0.0000 -0.0001 
motheredlevel_0 -0.0088 -0.0088   -0.0001 -0.0001 
motheredlevel_1 0.0012 0.0012   -0.0001 -0.0001 
motheredlevel_2 -0.0011 -0.0011   0.0005 0.0004 
motheredlevel_3 -0.0095 -0.0095   -0.0001 -0.0001 
motheredlevel_4 0.0021 0.0022   0.0007 0.0007 
motheredlevel_5 0.0151 0.0151   -0.0007 -0.0007 
motheredlevel_6 0.0029 0.0029   -0.0003 -0.0003 
motheredlevel_U -0.0020 -0.0020   0.0002 0.0001 
fatheredlevel_0 -0.0044 -0.0044   -0.0002 -0.0002 
fatheredlevel_1 -0.0028 -0.0028   0.0002 0.0001 
fatheredlevel_2 -0.0065 -0.0065   0.0000 -0.0001 
fatheredlevel_3 0.0026 0.0026   -0.0005 -0.0004 
fatheredlevel_4 -0.0144 -0.0144   0.0012 0.0012 
fatheredlevel_5 0.0265 0.0265   -0.0009 -0.0009 
fatheredlevel_6 0.0018 0.0018   0.0002 0.0002 
fatheredlevel_U -0.0029 -0.0029   0.0000 0.0000 
CLASSIFICATION_1 0.0309 0.0310   0.0022 0.0021 
CLASSIFICATION_2 -0.0335 -0.0335   -0.0009 -0.0009 
CLASSIFICATION_3 -0.0013 -0.0013   -0.0011 -0.0011 
CLASSIFICATION_4 0.0039 0.0039   -0.0001 -0.0002 
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Table C4 Variance ratios and K–S statistics for continuous covariates (mean split) 

Variable Unadjusted   Adjusted 
Variance ratio K–S statistic   Variance ratio K–S statistic 

SAT_equivalent 1.1166 0.0402  1.0838 0.0202 
hspct2 1.1634 0.0425  1.0244 0.0209 
transferredhours 1.0818 0.0219  1.0561 0.0136 
age 1.0272 0.0867   1.1199 0.0258 
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Table C5 Overall mean differences and standardized mean differences for all 
covariates in the Chemistry course sequence before and after propensity 
score adjustment (median split) 

Variable Unadjusted   Adjusted 
Mdiff Mdiff (standardized)   Mdiff Mdiff (standardized) 

            
SAT_equivalent 25.9553 0.1999   0.0155 0.0001 
hspct2 0.0067 0.0862   0.0004 0.0055 
transferredhours -1.6689 -0.1343   0.0200 0.0016 
age -0.1472 -0.2390   -0.0077 -0.0125 
sex_M -0.0108 -0.0109   0.0008 0.0008 
derivation_2eHB 0.0061 0.0061   0.0002 0.0002 
derivation_AI -0.0003 -0.0002   0.0000 0.0000 
derivation_A 0.0688 0.0688   0.0004 0.0004 
derivation_B2eH 0.0002 0.0001   -0.0001 -0.0001 
derivation_B -0.0083 -0.0084   0.0000 -0.0001 
derivation_F -0.0078 -0.0078   0.0006 0.0006 
derivation_HPI -0.0009 -0.0009   -0.0001 -0.0001 
derivation_H -0.0208 -0.0208   -0.0004 -0.0003 
derivation_U 0.0032 0.0032   0.0000 0.0000 
derivation_W -0.0402 -0.0402   -0.0008 -0.0008 
majorschool_2 0.0035 0.0035   -0.0002 -0.0002 
majorschool_3 -0.0072 -0.0072   0.0003 0.0003 
majorschool_4 -0.0093 -0.0093   0.0009 0.0009 
majorschool_5 -0.0008 -0.0008   0.0001 0.0001 
majorschool_9 -0.0004 -0.0004   0.0000 0.0000 
majorschool_C -0.0012 -0.0012   -0.0001 -0.0001 
majorschool_E 0.0580 0.0580   -0.0007 -0.0006 
majorschool_J -0.0100 -0.0100   0.0003 0.0003 
majorschool_L -0.0048 -0.0048   0.0005 0.0005 
majorschool_N 0.0017 0.0017   0.0001 0.0002 
majorschool_S -0.0015 -0.0015   0.0001 0.0001 
majorschool_U -0.0279 -0.0279   -0.0014 -0.0014 
motheredlevel_0 -0.0077 -0.0077   -0.0005 -0.0005 
motheredlevel_1 -0.0084 -0.0084   0.0003 0.0003 
motheredlevel_2 -0.0091 -0.0090   -0.0008 -0.0008 
motheredlevel_3 -0.0165 -0.0165   0.0011 0.0011 
motheredlevel_4 0.0157 0.0157   -0.0011 -0.0011 
motheredlevel_5 0.0271 0.0270   0.0003 0.0003 
motheredlevel_6 -0.0018 -0.0018   0.0009 0.0009 
motheredlevel_U 0.0006 0.0006   -0.0004 -0.0003 
fatheredlevel_0 -0.0071 -0.0072   -0.0001 -0.0002 
fatheredlevel_1 -0.0077 -0.0078   -0.0001 -0.0001 
fatheredlevel_2 -0.0119 -0.0119   0.0002 0.0001 
fatheredlevel_3 0.0015 0.0015   0.0005 0.0005 
fatheredlevel_4 -0.0134 -0.0133   -0.0039 -0.0038 
fatheredlevel_5 0.0438 0.0438   0.0029 0.0029 
fatheredlevel_6 0.0018 0.0019   0.0003 0.0004 
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fatheredlevel_U -0.0070 -0.0070   0.0002 0.0002 
CLASSIFICATION_1 0.0279 0.0279   -0.0004 -0.0004 
CLASSIFICATION_2 -0.0189 -0.0189   0.0012 0.0012 
CLASSIFICATION_3 -0.0092 -0.0092   -0.0009 -0.0010 
CLASSIFICATION_4 0.0002 0.0002   0.0001 0.0001 
            

 

Table C6 Variance ratios and K–S statistics for continuous covariates in the 
Chemistry course sequence (median split) 

Variable Unadjusted   Adjusted 
Variance ratio K–S statistic   Variance ratio K–S statistic 

SAT_equivalent 1.1458 0.0836   1.0480 0.0124 
hspct2 1.3138 0.0491   1.0224 0.0251 
transferredhours 1.0489 0.0781   1.1020 0.0162 
age 1.7223 0.0957   1.2500 0.0330 
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Table C7 Overall mean differences and standardized mean differences for all 
covariates in the Chemistry course sequence before and after propensity 
score adjustment (mean split) 

Variable Unadjusted   Adjusted 
Mdiff Mdiff (standardized)   Mdiff Mdiff (standardized) 

            
SAT_equivalent 19.4772 0.1477   -1.0735 -0.0081 
hspct2 0.0114 0.1426   -0.0006 -0.0070 
transferredhours -1.4033 -0.1126   0.0256 0.0021 
age -0.2447 -0.3791   0.0088 0.0137 
sex_M -0.0363 -0.0363   -0.0025 -0.0025 
derivation_2eHB 0.0007 0.0007   -0.0003 -0.0004 
derivation_AI 0.0006 0.0007   -0.0001 -0.0001 
derivation_A 0.0897 0.0898   -0.0036 -0.0036 
derivation_B2eH 0.0043 0.0044   -0.0004 -0.0004 
derivation_B -0.0014 -0.0013   0.0007 0.0006 
derivation_F -0.0089 -0.0089   0.0010 0.0010 
derivation_HPI -0.0007 -0.0007   0.0000 0.0000 
derivation_H -0.0147 -0.0147   0.0014 0.0013 
derivation_U 0.0026 0.0026   0.0001 0.0000 
derivation_W -0.0726 -0.0726   0.0014 0.0014 
majorschool_2 -0.0020 -0.0020   0.0010 0.0010 
majorschool_3 -0.0179 -0.0178   0.0003 0.0003 
majorschool_4 -0.0095 -0.0095   -0.0015 -0.0015 
majorschool_5 -0.0036 -0.0036   0.0002 0.0002 
majorschool_9 -0.0010 -0.0010   0.0002 0.0002 
majorschool_C -0.0042 -0.0042   -0.0001 -0.0001 
majorschool_E 0.0760 0.0760   -0.0023 -0.0023 
majorschool_J 0.0017 0.0017   -0.0002 -0.0002 
majorschool_L 0.0038 0.0039   0.0003 0.0003 
majorschool_N -0.0008 -0.0008   0.0002 0.0002 
majorschool_S -0.0010 -0.0009   -0.0001 -0.0001 
majorschool_U -0.0417 -0.0417   0.0019 0.0019 
motheredlevel_0 -0.0044 -0.0044   -0.0011 -0.0011 
motheredlevel_1 0.0023 0.0023   -0.0006 -0.0006 
motheredlevel_2 -0.0004 -0.0004   0.0008 0.0008 
motheredlevel_3 -0.0239 -0.0238   -0.0013 -0.0013 
motheredlevel_4 0.0074 0.0074   0.0051 0.0051 
motheredlevel_5 0.0236 0.0236   -0.0013 -0.0013 
motheredlevel_6 -0.0041 -0.0041   -0.0007 -0.0008 
motheredlevel_U -0.0007 -0.0007   -0.0009 -0.0008 
fatheredlevel_0 -0.0020 -0.0019   -0.0006 -0.0006 
fatheredlevel_1 0.0001 0.0002   0.0001 0.0001 
fatheredlevel_2 -0.0136 -0.0135   -0.0008 -0.0008 
fatheredlevel_3 -0.0021 -0.0022   0.0002 0.0001 
fatheredlevel_4 -0.0229 -0.0228   0.0014 0.0014 
fatheredlevel_5 0.0411 0.0412   0.0000 0.0000 
fatheredlevel_6 0.0027 0.0027   0.0009 0.0009 
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fatheredlevel_U -0.0036 -0.0036   -0.0010 -0.0010 
CLASSIFICATION_1 0.0679 0.0679   -0.0006 -0.0006 
CLASSIFICATION_2 -0.0551 -0.0551   0.0024 0.0024 
CLASSIFICATION_3 -0.0128 -0.0128   -0.0010 -0.0011 
CLASSIFICATION_4 0.0000 0.0000   -0.0007 -0.0007 
            

 

Table C8 Variance ratios and K–S statistics for continuous covariates in the 
Chemistry course sequence (mean split) 

Variable Unadjusted   Adjusted 
Variance ratio K–S statistic   Variance ratio K–S statistic 

SAT_equivalent 1.1300 0.06   1.0458 0.0176 
hspct2 1.4082 0.0733   1.1243 0.0277 
transferredhours 1.0011 0.065   1.1087 0.0203 
age 1.7799 0.1698   1.0962 0.0509 

 

Table C9 Overall mean differences and standardized mean differences for all 
covariates in the Economics course sequence before and after propensity 
score adjustment (median split) 

Variable Unadjusted   Adjusted 
Mdiff Mdiff (standardized)   Mdiff Mdiff (standardized) 

            
SAT_equivalent -6.7560 -0.0521   -0.3312 -0.0026 
hspct2 -0.0055 -0.0433   0.0001 0.0007 
transferredhours 1.5896 0.1308   0.0379 0.0031 
age -0.0537 -0.0777   0.0010 0.0015 
sex_M 0.0029 0.0029   0.0001 0.0001 
derivation_2eHB -0.0001 -0.0002   0.0002 0.0001 
derivation_AI 0.0005 0.0005   0.0000 0.0000 
derivation_A 0.0061 0.0061   -0.0002 -0.0002 
derivation_B2eH -0.0017 -0.0017   -0.0002 -0.0002 
derivation_B -0.0087 -0.0087   0.0002 0.0002 
derivation_F -0.0110 -0.0110   0.0015 0.0015 
derivation_HPI -0.0027 -0.0027   -0.0017 -0.0017 
derivation_H -0.0097 -0.0098   0.0010 0.0010 
derivation_U -0.0017 -0.0017   0.0001 0.0000 
derivation_W 0.0291 0.0291   -0.0006 -0.0006 
majorschool_2 0.0036 0.0036   -0.0012 -0.0011 
majorschool_3 0.0042 0.0042   0.0002 0.0002 
majorschool_4 -0.0111 -0.0111   0.0009 0.0009 
majorschool_5 -0.0005 -0.0005   0.0000 0.0000 
majorschool_9 -0.0006 -0.0006   0.0000 0.0000 
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majorschool_C -0.0064 -0.0064   0.0002 0.0001 
majorschool_E -0.0074 -0.0074   -0.0004 -0.0005 
majorschool_J -0.0026 -0.0026   -0.0002 -0.0002 
majorschool_L 0.0481 0.0480   0.0005 0.0005 
majorschool_N -0.0012 -0.0012   0.0001 0.0000 
majorschool_S -0.0018 -0.0018   -0.0001 -0.0001 
majorschool_U -0.0243 -0.0244   0.0000 0.0000 
motheredlevel_0 -0.0160 -0.0159   0.0010 0.0010 
motheredlevel_1 -0.0029 -0.0029   0.0002 0.0002 
motheredlevel_2 0.0079 0.0079   0.0000 -0.0001 
motheredlevel_3 0.0006 0.0006   -0.0005 -0.0005 
motheredlevel_4 0.0023 0.0023   -0.0011 -0.0011 
motheredlevel_5 0.0059 0.0059   0.0008 0.0008 
motheredlevel_6 -0.0041 -0.0041   -0.0004 -0.0004 
motheredlevel_U 0.0062 0.0062   0.0001 0.0001 
fatheredlevel_0 -0.0089 -0.0089   0.0001 0.0001 
fatheredlevel_1 -0.0048 -0.0049   -0.0001 0.0000 
fatheredlevel_2 0.0085 0.0084   0.0008 0.0009 
fatheredlevel_3 -0.0034 -0.0034   -0.0008 -0.0007 
fatheredlevel_4 -0.0053 -0.0053   0.0003 0.0003 
fatheredlevel_5 0.0058 0.0059   -0.0007 -0.0007 
fatheredlevel_6 0.0024 0.0024   -0.0002 -0.0003 
fatheredlevel_U 0.0057 0.0057   0.0004 0.0004 
CLASSIFICATION_1 0.0028 0.0028   -0.0017 -0.0017 
CLASSIFICATION_2 0.0001 0.0001   -0.0001 -0.0001 
CLASSIFICATION_3 -0.0035 -0.0036   0.0014 0.0015 
CLASSIFICATION_4 0.0008 0.0007   0.0003 0.0003 
            

 

Table C10 Variance ratios and K–S statistics for continuous covariates in the 
Economics course sequence (median split) 

Variable Unadjusted   Adjusted 
Variance ratio K–S statistic   Variance ratio K–S statistic 

SAT_equivalent 1.2041 0.0678   1.1998 0.0473 
hspct2 1.1288 0.0341   1.0134 0.0293 
transferredhours 1.1000 0.0722   1.1232 0.0285 
age 1.2692 0.0448   1.1024 0.0329 
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Table C11 Overall mean differences and standardized mean differences for all 
covariates in the Economics course sequence before and after propensity 
score adjustment (mean split) 

Variable Unadjusted   Adjusted 
Mdiff Mdiff (standardized)   Mdiff Mdiff (standardized) 

            
SAT_equivalent -3.5187 -0.0270   -0.6407 -0.0049 
hspct2 -0.0041 -0.0320   -0.0003 -0.0026 
transferredhours 2.1742 0.1796   0.0099 0.0008 
age -0.0635 -0.0913   0.0016 0.0023 
sex_M 0.0028 0.0028   0.0004 0.0004 
derivation_2eHB -0.0005 -0.0005   0.0000 0.0001 
derivation_AI -0.0002 -0.0002   -0.0001 0.0000 
derivation_A 0.0199 0.0200   0.0000 -0.0001 
derivation_B2eH -0.0024 -0.0023   -0.0002 -0.0002 
derivation_B -0.0108 -0.0107   0.0001 0.0000 
derivation_F -0.0085 -0.0085   0.0006 0.0005 
derivation_HPI -0.0030 -0.0030   -0.0017 -0.0017 
derivation_H -0.0210 -0.0209   0.0005 0.0005 
derivation_U -0.0024 -0.0023   0.0001 0.0001 
derivation_W 0.0286 0.0285   0.0007 0.0007 
majorschool_2 0.0069 0.0069   -0.0007 -0.0007 
majorschool_3 0.0034 0.0034   0.0003 0.0002 
majorschool_4 -0.0057 -0.0056   0.0002 0.0002 
majorschool_5 -0.0003 -0.0004   0.0000 0.0001 
majorschool_9 0.0007 0.0007   -0.0002 -0.0002 
majorschool_C -0.0018 -0.0018   0.0000 0.0000 
majorschool_E -0.0036 -0.0036   -0.0007 -0.0007 
majorschool_J -0.0030 -0.0030   0.0000 0.0000 
majorschool_L 0.0351 0.0351   0.0023 0.0022 
majorschool_N -0.0016 -0.0015   0.0001 0.0000 
majorschool_S -0.0023 -0.0023   -0.0001 -0.0001 
majorschool_U -0.0278 -0.0278   -0.0010 -0.0010 
motheredlevel_0 -0.0165 -0.0165   0.0002 0.0002 
motheredlevel_1 -0.0039 -0.0039   0.0000 0.0000 
motheredlevel_2 0.0024 0.0024   0.0002 0.0003 
motheredlevel_3 -0.0034 -0.0034   -0.0004 -0.0003 
motheredlevel_4 0.0103 0.0103   -0.0008 -0.0008 
motheredlevel_5 0.0126 0.0127   0.0004 0.0004 
motheredlevel_6 -0.0061 -0.0061   -0.0002 -0.0002 
motheredlevel_U 0.0046 0.0045   0.0005 0.0005 
fatheredlevel_0 -0.0107 -0.0107   -0.0004 -0.0004 
fatheredlevel_1 -0.0048 -0.0047   0.0000 0.0000 
fatheredlevel_2 0.0033 0.0032   0.0008 0.0008 
fatheredlevel_3 -0.0082 -0.0083   -0.0005 -0.0004 
fatheredlevel_4 0.0040 0.0039   -0.0007 -0.0007 
fatheredlevel_5 0.0112 0.0112   0.0003 0.0002 
fatheredlevel_6 0.0011 0.0011   -0.0004 -0.0004 



 
 
 

274 

fatheredlevel_U 0.0041 0.0042   0.0009 0.0009 
CLASSIFICATION_1 -0.0003 -0.0003   0.0003 0.0003 
CLASSIFICATION_2 0.0019 0.0019   -0.0014 -0.0015 
CLASSIFICATION_3 -0.0013 -0.0013   0.0006 0.0007 
CLASSIFICATION_4 -0.0002 -0.0003   0.0005 0.0005 
            

 

Table C12 Variance ratios and K–S statistics for continuous covariates in the 
Economics course sequence (mean split) 

Variable Unadjusted   Adjusted 
Variance ratio K–S statistic   Variance ratio K–S statistic 

SAT_equivalent 1.2271 0.0579   1.2013 0.0451 
hspct2 1.0804 0.0304   1.0152 0.0282 
transferredhours 1.1129 0.0982   1.2181 0.0462 
age 1.3671 0.0362   1.1512 0.0365 
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Table C13 Overall mean differences and standardized mean differences for all 
covariates in the Government course sequence before and after propensity 
score adjustment (median split) 

Variable Unadjusted   Adjusted 
Mdiff Mdiff (standardized)   Mdiff Mdiff (standardized) 

            
SAT_equivalent -2.4817 -0.0159   1.0689 0.0068 
hspct2 0.0121 0.0862   -0.0006 -0.0047 
transferredhours 0.8010 0.0768   0.0535 0.0051 
age -0.2121 -0.2597   -0.0017 -0.0021 
sex_M 0.0040 0.0040   -0.0026 -0.0026 
derivation_2eHB 0.0029 0.0029   -0.0006 -0.0007 
derivation_AI -0.0014 -0.0013   0.0000 0.0000 
derivation_A 0.0004 0.0004   0.0022 0.0023 
derivation_B2eH -0.0019 -0.0019   0.0000 0.0000 
derivation_B 0.0131 0.0131   0.0062 0.0062 
derivation_F -0.0018 -0.0018   0.0034 0.0034 
derivation_HPI -0.0016 -0.0016   -0.0013 -0.0013 
derivation_H 0.0366 0.0367   0.0033 0.0033 
derivation_U 0.0033 0.0033   0.0010 0.0009 
derivation_W -0.0496 -0.0497   -0.0142 -0.0142 
majorschool_2 0.0140 0.0140   -0.0024 -0.0024 
majorschool_3 -0.0043 -0.0042   -0.0005 -0.0005 
majorschool_4 -0.0040 -0.0040   -0.0021 -0.0020 
majorschool_5 0.0193 0.0193   0.0015 0.0015 
majorschool_9 -0.0033 -0.0033   -0.0026 -0.0026 
majorschool_C -0.0243 -0.0243   0.0039 0.0038 
majorschool_E -0.0170 -0.0170   0.0014 0.0014 
majorschool_J 0.0069 0.0069   -0.0011 -0.0012 
majorschool_L 0.0230 0.0230   -0.0042 -0.0042 
majorschool_N -0.0016 -0.0016   0.0006 0.0006 
majorschool_S -0.0098 -0.0098   0.0062 0.0062 
majorschool_U 0.0011 0.0011   -0.0006 -0.0005 
motheredlevel_0 -0.0017 -0.0017   0.0008 0.0008 
motheredlevel_1 0.0072 0.0073   0.0008 0.0008 
motheredlevel_2 0.0057 0.0057   0.0170 0.0170 
motheredlevel_3 -0.0019 -0.0018   0.0025 0.0024 
motheredlevel_4 -0.0399 -0.0399   -0.0092 -0.0092 
motheredlevel_5 0.0287 0.0287   -0.0065 -0.0065 
motheredlevel_6 0.0177 0.0177   -0.0017 -0.0017 
motheredlevel_U -0.0159 -0.0159   -0.0037 -0.0037 
fatheredlevel_0 0.0031 0.0032   0.0012 0.0012 
fatheredlevel_1 -0.0015 -0.0015   -0.0015 -0.0015 
fatheredlevel_2 -0.0003 -0.0003   0.0136 0.0135 
fatheredlevel_3 0.0193 0.0193   0.0077 0.0077 
fatheredlevel_4 -0.0575 -0.0575   -0.0136 -0.0136 
fatheredlevel_5 0.0421 0.0421   -0.0031 -0.0031 
fatheredlevel_6 0.0138 0.0138   -0.0014 -0.0014 
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fatheredlevel_U -0.0190 -0.0191   -0.0028 -0.0028 
CLASSIFICATION_1 0.0298 0.0298   0.0039 0.0039 
CLASSIFICATION_2 0.0195 0.0195   0.0009 0.0009 
CLASSIFICATION_3 -0.0433 -0.0433   -0.0052 -0.0051 
CLASSIFICATION_4 -0.0060 -0.0060   0.0003 0.0003 
            

 

Table C14 Variance ratios and K–S statistics for continuous covariates in the 
Government course sequence (median split) 

Variable Unadjusted   Adjusted 
Variance ratio K–S statistic   Variance ratio K–S statistic 

SAT_equivalent 1.0419 0.0378   1.0144 0.0308 
hspct2 1.2653 0.0482   1.0007 0.0326 
transferredhours 1.073 0.0429   1.065 0.0179 
age 1.1217 0.1463   1.0856 0.0595 
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Table C15 Overall mean differences and standardized mean differences for all 
covariates in the Government course sequence before and after propensity 
score adjustment (mean split) 

Variable Unadjusted   Adjusted 
Mdiff Mdiff (standardized)   Mdiff Mdiff (standardized) 

            
SAT_equivalent 18.1128 0.1167   -1.5251 -0.0098 
hspct2 0.0014 0.0092   0.0002 0.0013 
transferredhours -1.0701 -0.1020   0.0420 0.0040 
age -0.0305 -0.0366   -0.0037 -0.0044 
sex_M 0.0321 0.0321   -0.0032 -0.0032 
derivation_2eHB 0.0009 0.0009   -0.0016 -0.0017 
derivation_AI -0.0067 -0.0066   0.0003 0.0003 
derivation_A 0.0248 0.0248   0.0023 0.0023 
derivation_B2eH 0.0017 0.0017   0.0007 0.0007 
derivation_B 0.0086 0.0086   -0.0004 -0.0004 
derivation_F 0.0025 0.0025   -0.0018 -0.0018 
derivation_HPI -0.0036 -0.0036   -0.0015 -0.0015 
derivation_H -0.0321 -0.0322   0.0031 0.0031 
derivation_U 0.0001 0.0001   0.0001 0.0001 
derivation_W 0.0039 0.0038   -0.0012 -0.0012 
majorschool_2 0.0403 0.0402   -0.0056 -0.0055 
majorschool_3 -0.0101 -0.0100   0.0000 0.0000 
majorschool_4 0.0029 0.0029   0.0004 0.0004 
majorschool_5 -0.0082 -0.0082   0.0002 0.0002 
majorschool_9 0.0002 0.0002   -0.0003 -0.0002 
majorschool_C -0.0092 -0.0092   0.0033 0.0033 
majorschool_E 0.0019 0.0019   -0.0015 -0.0015 
majorschool_J -0.0061 -0.0060   0.0000 0.0000 
majorschool_L -0.0145 -0.0145   0.0004 0.0005 
majorschool_N -0.0031 -0.0031   -0.0009 -0.0008 
majorschool_S -0.0141 -0.0141   -0.0003 -0.0004 
majorschool_U 0.0201 0.0200   0.0041 0.0041 
motheredlevel_0 -0.0114 -0.0114   0.0008 0.0008 
motheredlevel_1 -0.0077 -0.0077   -0.0001 -0.0001 
motheredlevel_2 -0.0128 -0.0128   0.0041 0.0041 
motheredlevel_3 -0.0031 -0.0032   -0.0002 -0.0002 
motheredlevel_4 0.0045 0.0045   -0.0018 -0.0019 
motheredlevel_5 0.0119 0.0119   -0.0003 -0.0003 
motheredlevel_6 0.0246 0.0246   -0.0024 -0.0024 
motheredlevel_U -0.0059 -0.0059   0.0001 0.0000 
fatheredlevel_0 -0.0058 -0.0058   0.0013 0.0013 
fatheredlevel_1 -0.0037 -0.0037   0.0012 0.0012 
fatheredlevel_2 -0.0104 -0.0104   0.0010 0.0010 
fatheredlevel_3 0.0122 0.0122   -0.0009 -0.0009 
fatheredlevel_4 -0.0286 -0.0286   0.0006 0.0006 
fatheredlevel_5 0.0544 0.0544   -0.0034 -0.0034 
fatheredlevel_6 -0.0075 -0.0076   0.0006 0.0006 
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fatheredlevel_U -0.0106 -0.0106   -0.0004 -0.0004 
CLASSIFICATION_1 0.0003 0.0003   -0.0007 -0.0007 
CLASSIFICATION_2 0.0339 0.0339   0.0002 0.0003 
CLASSIFICATION_3 -0.0285 -0.0285   0.0000 0.0000 
CLASSIFICATION_4 -0.0056 -0.0057   0.0004 0.0004 
            

 

Table C16 Variance ratios and K–S statistics for continuous covariates in the 
Government course sequence (mean split) 

Variable Unadjusted   Adjusted 
Variance ratio K–S statistic   Variance ratio K–S statistic 

SAT_equivalent 1.0092 0.0578   1.0018 0.0354 
hspct2 1.0287 0.0208   1.0056 0.0251 
transferredhours 1.2474 0.0358   1.0907 0.0361 
age 1.0628 0.0549   1.1227 0.0372 

 

 

 
 
  



 
 
 

279 

Appendix D 

Table D1 Full regression output for fixed-effects models (median split) before and 
after propensity-score adjustment 

Variable Unadjusted  Adjusted 
Estimate SE t p-value   Estimate SE t p-value  

Intercept -1.312 0.759 -1.728 0.084 .  -1.446 0.946 -1.528 0.127  
High RP 0.069 0.025 2.732 0.006 **  0.060 0.025 2.448 0.014 * 
SAT equivalent 0.001 0.000 8.843 <.001 *** 0.001 0.000 9.193 <.001 *** 
derivationAI 0.093 0.139 0.672 0.501   0.075 0.138 0.543 0.587  
derivationA -0.050 0.037 -1.349 0.177   -0.010 0.037 -0.278 0.781  
derivationB2eH -0.002 0.090 -0.022 0.982   -0.007 0.092 -0.075 0.940  
derivationB -0.083 0.048 -1.715 0.086 .  -0.015 0.048 -0.321 0.748  
derivationF 0.067 0.058 1.159 0.247   0.109 0.057 1.931 0.053 . 
derivationHPI 0.152 0.182 0.836 0.403   0.283 0.189 1.495 0.135  
derivationH -0.083 0.038 -2.169 0.030 *  -0.051 0.038 -1.350 0.177  
derivationU -0.263 0.112 -2.350 0.019 *  -0.255 0.110 -2.312 0.021 * 
derivationW -0.008 0.036 -0.232 0.816   0.027 0.036 0.747 0.455  
motheredlevel1 0.013 0.054 0.244 0.807   0.021 0.053 0.395 0.693  
motheredlevel2 -0.056 0.048 -1.165 0.244   -0.034 0.048 -0.717 0.474  
motheredlevel3 -0.008 0.050 -0.153 0.878   0.024 0.049 0.489 0.625  
motheredlevel4 0.009 0.048 0.186 0.853   0.020 0.047 0.416 0.677  
motheredlevel5 0.024 0.049 0.483 0.629   0.023 0.048 0.466 0.641  
motheredlevel6 0.030 0.053 0.574 0.566   0.048 0.052 0.929 0.353  
motheredlevelU 0.067 0.070 0.957 0.339   0.092 0.069 1.338 0.181  
fatheredlevel1 -0.002 0.056 -0.030 0.976   -0.090 0.055 -1.619 0.106  
fatheredlevel2 0.037 0.050 0.744 0.457   0.022 0.049 0.446 0.655  
fatheredlevel3 0.008 0.051 0.152 0.879   -0.021 0.050 -0.408 0.683  
fatheredlevel4 0.104 0.049 2.121 0.034 *  0.093 0.049 1.911 0.056 . 
fatheredlevel5 0.115 0.050 2.303 0.021 *  0.100 0.049 2.020 0.043 * 
fatheredlevel6 0.100 0.057 1.756 0.079 .  0.079 0.057 1.401 0.161  
fatheredlevelU 0.017 0.068 0.252 0.801   -0.020 0.066 -0.301 0.764  
age -0.046 0.012 -3.975 <.001 *** -0.044 0.012 -3.791 0.000 *** 
class_zscore.x 0.726 0.009 79.509 <.001 *** 0.728 0.009 80.350 <.001 *** 
CLASSIFICATION2 0.021 0.018 1.131 0.258   0.028 0.018 1.534 0.125  
CLASSIFICATION3 0.015 0.034 0.433 0.665   -0.046 0.033 -1.394 0.163  
CLASSIFICATION4 0.027 0.059 0.466 0.641   0.096 0.057 1.664 0.096 . 
hspct2 0.441 0.064 6.884 0.000 *** 0.474 0.063 7.514 0.000 *** 
sexW 0.017 0.013 1.254 0.210   0.007 0.013 0.515 0.607  
transferredhours 0.002 0.001 3.248 0.001 **  0.001 0.001 2.506 0.012 * 
majorschool3 0.012 0.054 0.214 0.830   0.057 0.053 1.077 0.281  
majorschool4 -0.020 0.028 -0.718 0.473   -0.018 0.028 -0.639 0.523  
majorschool5 -0.099 0.058 -1.714 0.087 .  -0.046 0.056 -0.827 0.408  
majorschool9 0.109 0.182 0.599 0.549   0.087 0.186 0.468 0.640  
majorschoolC 0.010 0.039 0.252 0.801   0.033 0.039 0.839 0.402  
majorschoolE 0.052 0.025 2.093 0.036 *  0.050 0.025 2.010 0.044 * 
majorschoolJ 0.013 0.063 0.212 0.832   -0.060 0.062 -0.971 0.332  
majorschoolL 0.055 0.026 2.092 0.036   0.054 0.026 2.070 0.038 * 
majorschoolN -0.048 0.086 -0.553 0.580   -0.090 0.085 -1.066 0.287  
majorschoolS -0.022 0.095 -0.230 0.818   -0.062 0.094 -0.658 0.511  
majorschoolU 0.040 0.026 1.567 0.117   0.044 0.026 1.724 0.085 . 
HRS_UNDERTAKEN.y 0.033 0.003 10.656 <.001 *** 0.030 0.003 9.804 <.001   
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Note. N=13332; RMSE = 0.7077; df = 12809, R2 = .4635; *p < .05; **p < .01; ***p < .001 
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Table D2 Full regression output for random-effects models (median split) before and 
after propensity-score adjustment 

Note. MSE = .49803; sp
2 = 0.01963; ss

2=0.0162; *p < .05; **p < .01; ***p < .001 

Variable Unadjusted   Adjusted 
Estimate SE t p-value   Estimate SE t p-value  

Intercept -1.093 0.265 -4.131 <.001 *** -1.085 0.265 -4.103 <.001 *** 
High RP 0.057 0.032 1.786 0.045 *  0.067 0.030 2.247 0.027  
SAT equivalent 0.001 0.000 8.407 <.001 *** 0.001 0.000 8.376 <.001 *** 
derivationAI 0.098 0.137 0.714 0.479   0.092 0.136 0.678 0.498  
derivationA -0.052 0.036 -1.433 0.147   -0.064 0.036 -1.762 0.078  
derivationB2eH -0.004 0.089 -0.045 0.948   -0.023 0.090 -0.261 0.794  
derivationB -0.072 0.048 -1.515 0.129   -0.079 0.048 -1.652 0.099  
derivationF 0.058 0.057 1.024 0.303   0.058 0.057 1.023 0.307 . 
derivationHPI 0.152 0.181 0.841 0.404   0.078 0.184 0.426 0.670  
derivationH -0.080 0.038 -2.118 0.034 *  -0.087 0.038 -2.315 0.021  
derivationU -0.278 0.111 -2.494 0.013 *  -0.279 0.112 -2.496 0.013 * 
derivationW -0.007 0.035 -0.211 0.833   -0.012 0.035 -0.344 0.731  
motheredlevel1 -0.013 0.053 -0.237 0.819   -0.036 0.011 -3.152 0.002 ** 
motheredlevel2 -0.074 0.048 -1.541 0.125   0.002 0.052 0.034 0.973  
motheredlevel3 -0.025 0.049 -0.512 0.618   -0.078 0.047 -1.636 0.102  
motheredlevel4 -0.008 0.047 -0.161 0.881   -0.032 0.049 -0.650 0.516  
motheredlevel5 0.003 0.049 0.059 0.945   -0.016 0.047 -0.336 0.737  
motheredlevel6 0.019 0.052 0.369 0.699   -0.002 0.048 -0.036 0.971  
motheredlevelU 0.060 0.070 0.858 0.389   0.019 0.052 0.368 0.713  
fatheredlevel1 0.021 0.055 0.386 0.705   0.062 0.069 0.902 0.367  
fatheredlevel2 0.054 0.049 1.100 0.273   0.024 0.055 0.433 0.665  
fatheredlevel3 0.033 0.050 0.650 0.522   0.061 0.049 1.234 0.217  
fatheredlevel4 0.123 0.048 2.541 0.011 *  0.044 0.050 0.881 0.378  
fatheredlevel5 0.132 0.049 2.701 0.007 ** 0.132 0.048 2.724 0.006 * 
fatheredlevel6 0.123 0.056 2.185 0.030 *  0.138 0.049 2.822 0.005 * 
fatheredlevelU 0.019 0.067 0.287 0.775   0.115 0.056 2.037 0.042 . 
age -0.036 0.011 -3.143 0.001 ** 0.015 0.067 0.232 0.817  
class_zscore.x 0.721 0.009 80.194 <.001 *** 0.722 0.009 80.068 <.001 *** 
CLASSIFICATION2 0.018 0.018 1.033 0.384   0.007 0.018 0.395 0.693  
CLASSIFICATION3 0.003 0.032 0.085 0.926   0.003 0.032 0.099 0.921 . 
CLASSIFICATION4 -0.006 0.057 -0.099 0.851   0.012 0.057 0.219 0.827  
hspct2 0.438 0.063 6.964 <.001 *** 0.407 0.063 6.465 0.000 *** 
sexW 0.017 0.013 1.297 0.202   0.020 0.013 1.545 0.122  
transferredhours 0.002 0.001 3.106 0.002 ** 0.002 0.001 3.074 0.002 * 
majorschool3 0.009 0.053 0.164 0.851   0.009 0.053 0.164 0.870  
majorschool4 -0.029 0.027 -1.044 0.287   -0.030 0.027 -1.097 0.272  
majorschool5 -0.083 0.056 -1.466 0.144   -0.083 0.056 -1.463 0.144  
majorschool9 0.185 0.175 1.058 0.284   0.182 0.173 1.052 0.293  
majorschoolC 0.002 0.038 0.047 0.996   0.002 0.037 0.066 0.947  
majorschoolE 0.046 0.024 1.908 0.058 .  0.047 0.024 1.934 0.053 . 
majorschoolJ -0.013 0.063 -0.201 0.851   -0.038 0.062 -0.605 0.545  
majorschoolL 0.054 0.026 2.090 0.036 *  0.048 0.026 1.864 0.062 * 
majorschoolN -0.018 0.085 -0.216 0.819   -0.007 0.085 -0.084 0.933  
majorschoolS -0.047 0.094 -0.498 0.619   -0.038 0.093 -0.408 0.683  
majorschoolU 0.040 0.025 1.590 0.113   0.040 0.025 1.572 0.116 . 
HRS_UNDERTAKEN.y 0.031 0.003 10.471 <.001 *** 0.032 0.003 10.715 <.001 *** 
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Table D3 Full regression output for cluster-robust standard errors models (median 
split) before and after propensity-score adjustment 

Variable Unadjusted  Adjusted 
Estimate SE d.f. p-value   Estimate SE d.f. p-value  

Intercept -1.163 0.270 196.9 < 0.001 *** -1.265 0.320 90.94 <0.001 *** 
High RP 0.036 0.018 119.4 0.056 .  0.035 0.019 126.76 0.061 . 
SAT equivalent 0.001 0.000 196.8 < 0.001 *** 0.001 0.000 103.64 <0.001 *** 
derivationAI 0.150 0.099 31.9 0.138   0.105 0.129 16.11 0.427  
derivationA -0.040 0.031 118.5 0.200   -0.003 0.035 93.71 0.942  
derivationB2eH 0.000 0.103 61.4 0.998   -0.002 0.095 33.20 0.980  
derivationB -0.062 0.047 147.7 0.189   0.003 0.062 75.22 0.961  
derivationF 0.077 0.058 141.6 0.184   0.120 0.062 57.17 0.058 . 
derivationHPI 0.152 0.136 16.1 0.279   0.273 0.138 2.20 0.174  
derivationH -0.068 0.033 129.7 0.044 *  -0.041 0.038 97.96 0.273  
derivationU -0.267 0.110 31.6 0.021 *  -0.256 0.111 31.21 0.028 * 
derivationW 0.009 0.031 123.8 0.775   0.037 0.035 94.88 0.291  
motheredlevel1 -0.031 0.011 193.5 0.007 **  -0.028 0.014 85.07 0.048 * 
motheredlevel2 -0.025 0.058 129.8 0.670   -0.001 0.068 64.45 0.984  
motheredlevel3 -0.076 0.055 130.0 0.169   -0.043 0.069 48.64 0.535  
motheredlevel4 -0.023 0.056 130.9 0.682   0.013 0.068 46.77 0.843  
motheredlevel5 -0.004 0.054 122.6 0.940   0.018 0.064 43.74 0.776  
motheredlevel6 0.004 0.054 125.6 0.934   0.018 0.065 44.28 0.781  
motheredlevelU 0.018 0.057 132.8 0.749   0.048 0.068 51.33 0.480  
fatheredlevel1 0.060 0.081 103.7 0.462   0.103 0.087 30.22 0.242  
fatheredlevel2 0.031 0.067 133.7 0.648   -0.058 0.080 69.36 0.466  
fatheredlevel3 0.056 0.060 142.6 0.351   0.036 0.074 61.24 0.634  
fatheredlevel4 0.041 0.062 144.2 0.514   0.003 0.076 67.84 0.966  
fatheredlevel5 0.129 0.059 133.7 0.031 *  0.111 0.072 61.32 0.128  
fatheredlevel6 0.137 0.060 135.0 0.024 *  0.114 0.072 62.97 0.121  
fatheredlevelU 0.126 0.068 139.3 0.067 .  0.100 0.080 68.69 0.216  
age 0.030 0.083 112.1 0.720   -0.019 0.093 28.18 0.839  
class_zscore.x 0.705 0.017 170.7 < 0.001 *** 0.707 0.018 79.60 <0.001 *** 
CLASSIFICATION2 0.016 0.017 263.6 0.362   0.023 0.020 139.99 0.254  
CLASSIFICATION3 -0.002 0.031 233.4 0.950   -0.055 0.043 67.41 0.208  
CLASSIFICATION4 -0.029 0.060 119.7 0.625   0.024 0.091 13.89 0.793  
hspct2 0.421 0.076 277.5 < 0.001 *** 0.455 0.102 86.06 <0.001 *** 
sexW 0.013 0.014 192.5 0.330   0.000 0.016 136.50 0.993  
transferredhours 0.002 0.001 191.2 0.006 **  0.001 0.001 113.35 0.083 . 
majorschool3 -0.026 0.054 123.0 0.627   0.027 0.060 45.95 0.660  
majorschool4 -0.035 0.026 257.9 0.177   -0.029 0.029 139.84 0.322  
majorschool5 -0.077 0.065 173.3 0.240   -0.019 0.075 46.00 0.798  
majorschool9 0.195 0.136 13.2 0.174   0.185 0.086 1.90 0.170  
majorschoolC 0.007 0.041 242.3 0.871   0.008 0.051 74.68 0.870  
majorschoolE 0.027 0.024 132.9 0.259   0.033 0.024 111.09 0.175  
majorschoolJ -0.042 0.066 49.0 0.524   -0.126 0.108 10.63 0.271  
majorschoolL 0.048 0.027 218.6 0.078 .  0.050 0.029 165.89 0.081 . 
majorschoolN 0.012 0.113 69.1 0.915   -0.029 0.116 10.81 0.809  
majorschoolS -0.015 0.089 51.1 0.866   -0.060 0.106 8.88 0.584  
majorschoolU 0.034 0.025 213.3 0.180   0.043 0.027 138.07 0.117  
C_HRS_UNDERTAKEN.y 0.031 0.003 228.6 < 0.001 *** 0.028 0.004 128.12 <0.001 *** 
Note. *p < .05; **p < .01; ***p < .001 
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Table D4 Full regression output for fixed-effects models (mean split) before and after 
propensity-score adjustment 

Variable Unadjusted   Adjusted 
Estimate SE t p-value     Estimate SE t p-value   

Intercept -1.297 0.759 -1.708 0.088 .  -1.214 0.789 -1.538 0.124  
High RP 0.069 0.029 2.393 0.017 *  0.067 0.029 2.352 0.019 * 
SAT equivalent 0.001 0.000 8.831 <.001 *** 0.001 0.000 8.890 <.001 *** 
derivationAI 0.097 0.139 0.698 0.485   0.085 0.139 0.608 0.543  
derivationA -0.049 0.037 -1.340 0.180   -0.059 0.037 -1.612 0.107  
derivationB2eH -0.004 0.090 -0.047 0.962   -0.016 0.091 -0.171 0.864  
derivationB -0.083 0.048 -1.713 0.087 .  -0.088 0.048 -1.833 0.067 . 
derivationF 0.067 0.058 1.158 0.247   0.054 0.057 0.942 0.346  
derivationHPI 0.151 0.182 0.829 0.407   0.057 0.188 0.304 0.761  
derivationH -0.083 0.038 -2.180 0.029 *  -0.093 0.038 -2.447 0.014 * 
derivationU -0.264 0.112 -2.363 0.018 *  -0.218 0.113 -1.928 0.054 * 
derivationW -0.008 0.036 -0.225 0.822   -0.015 0.036 -0.432 0.666  
motheredlevel1 0.012 0.054 0.224 0.823   0.023 0.054 0.437 0.662  
motheredlevel2 -0.058 0.048 -1.194 0.232   -0.063 0.048 -1.306 0.192  
motheredlevel3 -0.009 0.050 -0.187 0.851   -0.011 0.050 -0.223 0.823  
motheredlevel4 0.007 0.048 0.149 0.881   0.003 0.048 0.054 0.957  
motheredlevel5 0.022 0.049 0.443 0.658   0.016 0.049 0.324 0.746  
motheredlevel6 0.028 0.053 0.537 0.591   0.030 0.053 0.575 0.565  
motheredlevelU 0.066 0.070 0.931 0.352   0.052 0.070 0.744 0.457  
fatheredlevel1 -0.002 0.056 -0.042 0.966   0.001 0.056 0.020 0.984  
fatheredlevel2 0.037 0.050 0.733 0.464   0.042 0.050 0.838 0.402  
fatheredlevel3 0.008 0.051 0.156 0.876   0.015 0.051 0.292 0.770  
fatheredlevel4 0.104 0.049 2.118 0.034 *  0.109 0.049 2.218 0.027 * 
fatheredlevel5 0.115 0.050 2.298 0.022 *  0.121 0.050 2.419 0.016 * 
fatheredlevel6 0.101 0.057 1.774 0.076 .  0.103 0.057 1.806 0.071 . 
fatheredlevelU 0.018 0.068 0.258 0.796   0.029 0.068 0.434 0.664  
age -0.047 0.012 -4.022 <.001 *** -0.052 0.012 -4.464 <.001 *** 
class_zscore.x 0.727 0.009 79.542 <.001 *** 0.722 0.009 78.529 <.001 *** 
CLASSIFICATION2 0.021 0.018 1.134 0.257   0.017 0.018 0.915 0.360  
CLASSIFICATION3 0.015 0.034 0.448 0.654   0.026 0.034 0.787 0.431  
CLASSIFICATION4 0.028 0.059 0.478 0.632   0.047 0.058 0.802 0.422  
hspct2 0.441 0.064 6.875 <.001 *** 0.434 0.064 6.776 <.001 *** 
sexW 0.017 0.013 1.275 0.202   0.016 0.013 1.218 0.223  
transferredhours 0.002 0.001 3.267 0.001 **  0.002 0.001 3.541 <.001 *** 
majorschool3 0.011 0.054 0.210 0.833   0.013 0.054 0.233 0.816  
majorschool4 -0.020 0.028 -0.704 0.482   -0.018 0.029 -0.623 0.534  
majorschool5 -0.095 0.058 -1.637 0.102 .  -0.099 0.058 -1.705 0.088 . 
majorschool9 0.106 0.182 0.580 0.562   0.108 0.181 0.595 0.552  
majorschoolC 0.009 0.039 0.242 0.809   0.007 0.039 0.175 0.861  
majorschoolE 0.053 0.025 2.122 0.034 *  0.054 0.025 2.176 0.030 * 
majorschoolJ 0.015 0.063 0.231 0.818   0.037 0.063 0.585 0.559  
majorschoolL 0.055 0.026 2.102 0.036   0.056 0.026 2.133 0.033 * 
majorschoolN -0.044 0.086 -0.510 0.610   -0.033 0.086 -0.383 0.701  
majorschoolS -0.019 0.095 -0.205 0.838   -0.010 0.095 -0.110 0.912  
majorschoolU 0.040 0.026 1.564 0.118   0.037 0.026 1.456 0.145  
HRS_UNDERTAKEN.y 0.032 0.003 10.626 <.001 *** 0.033 0.003 10.906 <.001 *** 

Note. N=13332; RMSE = 0.7078; df = 12809, R2 = .4634; *p < .05; **p < .01; ***p < .001 
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Table D5 Full regression output for random-effects models (mean split) before and 
after propensity-score adjustment 

Variable Unadjusted   Adjusted 
Estimate SE t p-value     Estimate SE t p-value   

Intercept -1.088 0.264 -4.118 0.000 *** -1.025 0.262 -3.911 0.000 *** 
High RP 0.056 0.029 1.947 0.054 .  0.057 0.029 1.943 0.055 . 
SAT equivalent 0.001 0.000 8.398 <.001 *** 0.001 0.000 8.402 <.001 *** 
derivationAI 0.099 0.137 0.722 0.471   0.077 0.138 0.561 0.575  
derivationA -0.053 0.036 -1.441 0.150   -0.062 0.036 -1.708 0.088 . 
derivationB2eH -0.006 0.089 -0.064 0.949   -0.014 0.090 -0.155 0.877  
derivationB -0.072 0.048 -1.521 0.128   -0.077 0.048 -1.611 0.107  
derivationF 0.058 0.057 1.026 0.305   0.048 0.057 0.856 0.392  
derivationHPI 0.153 0.181 0.846 0.398   0.060 0.187 0.323 0.747  
derivationH -0.080 0.038 -2.118 0.034 *  -0.089 0.038 -2.369 0.018 * 
derivationU -0.278 0.111 -2.500 0.012 *  -0.231 0.113 -2.053 0.040 * 
derivationW -0.007 0.035 -0.203 0.839   -0.015 0.035 -0.414 0.679  
motheredlevel1 -0.013 0.053 -0.254 0.800   -0.040 0.011 -3.531 <.001 *** 
motheredlevel2 -0.074 0.048 -1.553 0.120   0.001 0.053 0.015 0.988  
motheredlevel3 -0.026 0.049 -0.522 0.602   -0.079 0.048 -1.646 0.100 . 
motheredlevel4 -0.008 0.047 -0.175 0.861   -0.027 0.049 -0.545 0.586  
motheredlevel5 0.002 0.049 0.045 0.964   -0.012 0.047 -0.249 0.803  
motheredlevel6 0.019 0.052 0.363 0.717   -0.003 0.049 -0.057 0.955  
motheredlevelU 0.060 0.070 0.854 0.393   0.022 0.052 0.424 0.672  
fatheredlevel1 0.021 0.055 0.384 0.701   0.046 0.070 0.660 0.509  
fatheredlevel2 0.054 0.049 1.097 0.273   0.023 0.055 0.426 0.670  
fatheredlevel3 0.032 0.050 0.640 0.522   0.058 0.049 1.193 0.233  
fatheredlevel4 0.123 0.048 2.537 0.011 *  0.038 0.050 0.762 0.446  
fatheredlevel5 0.132 0.049 2.696 0.007 **  0.127 0.048 2.645 0.008 ** 
fatheredlevel6 0.123 0.056 2.184 0.029 *  0.139 0.049 2.841 0.005 ** 
fatheredlevelU 0.019 0.067 0.286 0.775   0.124 0.056 2.211 0.027 * 
age -0.037 0.011 -3.199 0.001 **  0.032 0.067 0.484 0.629  
class_zscore.x 0.721 0.009 80.210 <.001 *** 0.717 0.009 79.339 <.001 *** 
CLASSIFICATION2 0.017 0.018 0.971 0.331   0.015 0.018 0.823 0.411  
CLASSIFICATION3 0.000 0.032 -0.005 0.996   0.013 0.032 0.392 0.695  
CLASSIFICATION4 -0.009 0.057 -0.157 0.875   0.015 0.057 0.270 0.787  
hspct2 0.439 0.063 6.968 <.001 *** 0.430 0.063 6.833 <.001 *** 
sexW 0.017 0.013 1.302 0.193   0.017 0.013 1.318 0.187  
transferredhours 0.002 0.001 3.129 0.002 **  0.002 0.001 3.350 0.001 *** 
majorschool3 0.009 0.053 0.166 0.868   0.015 0.053 0.278 0.781  
majorschool4 -0.030 0.027 -1.097 0.273   -0.029 0.027 -1.052 0.293  
majorschool5 -0.081 0.056 -1.428 0.153   -0.081 0.057 -1.431 0.152  
majorschool9 0.184 0.175 1.054 0.292   0.191 0.174 1.103 0.270  
majorschoolC 0.000 0.038 0.006 0.995   0.000 0.038 -0.008 0.993  
majorschoolE 0.046 0.024 1.894 0.058 .  0.047 0.024 1.958 0.050 . 
majorschoolJ -0.015 0.063 -0.232 0.817   0.010 0.063 0.156 0.876  
majorschoolL 0.054 0.026 2.102 0.036 *  0.056 0.026 2.180 0.029 * 
majorschoolN -0.019 0.085 -0.224 0.823   -0.003 0.085 -0.029 0.976  
majorschoolS -0.047 0.094 -0.503 0.615   -0.044 0.094 -0.466 0.641  
majorschoolU 0.039 0.025 1.561 0.119   0.036 0.025 1.432 0.152  
HRS_UNDERTAKEN.y 0.031 0.003 10.452 <.001 *   0.032 0.003 10.685 <.001 *** 

Note. MSE = .49795; sp
2 = 0.01934; ss

2=0.01664; *p < .05; **p < .01; ***p < .001 
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Table D6 Full regression output for cluster-robust standard errors models (mean split) 
before and after propensity-score adjustment 

Variable Unadjusted   Adjusted 
Estimate SE d.f. p-value     Estimate SE d.f. p-value   

Intercept -1.117 0.270 201.8 < 0.001 *** -1.063 0.282 142.21 < 0.001 *** 
High RP 0.019 0.017 230.4 0.273   0.018 0.017 210.91 0.302  
SAT equivalent 0.001 0.000 196.1 < 0.001 *** 0.001 0.000 233.92 < 0.001 *** 
derivationAI 0.151 0.098 31.9 0.135   0.125 0.107 29.87 0.252  
derivationA -0.041 0.031 118.5 0.191   -0.052 0.032 104.99 0.111  
derivationB2eH -0.004 0.103 61.4 0.969   -0.005 0.102 52.93 0.958  
derivationB -0.064 0.047 147.8 0.180   -0.069 0.048 157.49 0.150  
derivationF 0.076 0.058 141.7 0.188   0.065 0.060 132.65 0.279  
derivationHPI 0.148 0.138 16.1 0.300   0.067 0.186 7.16 0.729  
derivationH -0.068 0.033 129.7 0.042 *  -0.078 0.034 118.61 0.023 * 
derivationU -0.265 0.110 31.6 0.022 *  -0.217 0.125 19.30 0.100 . 
derivationW 0.009 0.031 123.7 0.782   0.002 0.032 107.23 0.946  
motheredlevel1 -0.033 0.011 197.6 0.004 **  -0.036 0.012 117.09 0.003 ** 
motheredlevel2 -0.026 0.059 129.7 0.657   -0.013 0.061 144.31 0.830  
motheredlevel3 -0.076 0.055 130.0 0.167   -0.083 0.057 134.82 0.147  
motheredlevel4 -0.023 0.056 130.8 0.683   -0.025 0.058 133.47 0.662  
motheredlevel5 -0.004 0.054 122.5 0.941   -0.010 0.055 125.72 0.860  
motheredlevel6 0.005 0.054 125.4 0.932   -0.004 0.056 128.92 0.943  
motheredlevelU 0.019 0.057 132.5 0.745   0.019 0.060 136.89 0.749  
fatheredlevel1 0.061 0.081 103.6 0.452   0.048 0.079 105.46 0.546  
fatheredlevel2 0.030 0.067 133.7 0.653   0.035 0.069 156.52 0.615  
fatheredlevel3 0.056 0.060 142.6 0.350   0.062 0.063 157.70 0.328  
fatheredlevel4 0.041 0.062 144.2 0.516   0.049 0.065 158.85 0.453  
fatheredlevel5 0.129 0.059 133.7 0.032 *  0.137 0.061 149.28 0.027 * 
fatheredlevel6 0.137 0.060 135.0 0.024 *  0.147 0.063 151.88 0.020 * 
fatheredlevelU 0.127 0.068 139.3 0.065 .  0.133 0.069 162.54 0.058 . 
age 0.029 0.083 112.1 0.730   0.044 0.083 120.06 0.596  
class_zscore.x 0.705 0.016 170.8 < 0.001 *** 0.700 0.015 217.42 < 0.001 *** 
CLASSIFICATION2 0.014 0.017 265.1 0.433   0.012 0.018 281.70 0.517  
CLASSIFICATION3 -0.007 0.031 231.6 0.816   0.009 0.032 202.77 0.787  
CLASSIFICATION4 -0.033 0.060 120.3 0.576   -0.004 0.059 117.67 0.943  
hspct2 0.423 0.075 277.9 < 0.001 *** 0.415 0.074 270.52 < 0.001 *** 
sexW 0.013 0.014 192.8 0.346   0.014 0.014 217.24 0.306  
transferredhours 0.002 0.001 190.9 0.005 **  0.002 0.001 221.47 0.003 ** 
majorschool3 -0.026 0.054 123.1 0.633   -0.020 0.055 122.05 0.709  
majorschool4 -0.038 0.026 257.5 0.137   -0.043 0.026 253.86 0.104  
majorschool5 -0.074 0.065 173.4 0.258   -0.077 0.066 166.74 0.249  
majorschool9 0.191 0.136 13.2 0.184   0.195 0.139 12.91 0.184  
majorschoolC 0.003 0.041 241.8 0.938   0.003 0.041 239.16 0.936  
majorschoolE 0.025 0.024 136.5 0.298   0.027 0.024 139.68 0.266  
majorschoolJ -0.048 0.066 49.0 0.472   -0.020 0.064 49.25 0.758  
majorschoolL 0.049 0.027 219.1 0.075 .  0.049 0.028 219.64 0.079 . 
majorschoolN 0.011 0.113 69.1 0.923   0.032 0.118 65.07 0.784  
majorschoolS -0.019 0.089 51.1 0.831   -0.016 0.088 46.25 0.856  
majorschoolU 0.033 0.025 213.4 0.197   0.027 0.025 210.54 0.282  
HRS_UNDERTAKEN.y 0.031 0.003 228.7 < 0.001 ***   0.032 0.003 274.93 < 0.001 *** 
Note. *p < .05; **p < .01; ***p < .001 
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Table D7 Full regression output for fixed-effects models in the Chemistry course 
sequence (median split) before and after propensity-score adjustment 

Variable Unadjusted   Adjusted 
Estimate SE t p-value     Estimate SE t p-value   

Intercept -1.154 0.405 -2.850 0.004 **  -1.393 0.403 -3.459 0.001  
High RP 0.091 0.031 2.914 0.004 **  0.071 0.031 2.320 0.020 * 
SAT equivalent 0.000 0.000 3.978 0.000 *** 0.000 0.000 3.954 0.000 *** 
derivationAI 0.181 0.240 0.756 0.450   0.282 0.237 1.188 0.235  
derivationA -0.042 0.047 -0.897 0.370   -0.032 0.047 -0.680 0.497  
derivationB2eH -0.018 0.125 -0.142 0.887   -0.019 0.126 -0.154 0.878  
derivationB -0.065 0.064 -1.011 0.312 .  -0.038 0.064 -0.604 0.546  
derivationF 0.048 0.078 0.616 0.538   0.163 0.077 2.119 0.034 . 
derivationHPI 0.014 0.240 0.057 0.954   0.165 0.242 0.682 0.495  
derivationH -0.047 0.050 -0.944 0.345   -0.047 0.049 -0.946 0.344  
derivationU -0.272 0.132 -2.064 0.039 *  -0.230 0.132 -1.734 0.083 * 
derivationW 0.001 0.047 0.026 0.980   0.004 0.046 0.077 0.939  
motheredlevel1 -0.048 0.070 -0.686 0.493   -0.051 0.070 -0.724 0.469  
motheredlevel2 -0.092 0.065 -1.427 0.154   -0.046 0.065 -0.709 0.478  
motheredlevel3 -0.049 0.066 -0.740 0.460   -0.009 0.066 -0.130 0.896  
motheredlevel4 -0.064 0.064 -1.014 0.310   -0.029 0.064 -0.448 0.654  
motheredlevel5 -0.032 0.065 -0.497 0.619   0.002 0.065 0.038 0.970  
motheredlevel6 -0.045 0.069 -0.651 0.515   -0.009 0.069 -0.130 0.896  
motheredlevelU -0.069 0.094 -0.736 0.462   -0.040 0.093 -0.429 0.668  
fatheredlevel1 -0.028 0.074 -0.377 0.706   -0.053 0.075 -0.709 0.478  
fatheredlevel2 -0.007 0.067 -0.103 0.918   -0.033 0.067 -0.484 0.628  
fatheredlevel3 -0.018 0.069 -0.260 0.795   -0.055 0.068 -0.796 0.426  
fatheredlevel4 0.104 0.066 1.578 0.115   0.071 0.066 1.078 0.281 . 
fatheredlevel5 0.120 0.067 1.800 0.072 .  0.083 0.067 1.249 0.212 * 
fatheredlevel6 0.167 0.075 2.225 0.026 *  0.112 0.075 1.501 0.133  
fatheredlevelU 0.108 0.091 1.185 0.236   0.066 0.091 0.731 0.465  
age -0.051 0.017 -2.985 0.003 **  -0.041 0.017 -2.353 0.019 *** 
class_zscore.x 0.847 0.013 64.959 < 2e-16 *** 0.848 0.013 65.642 < 2e-16 *** 
CLASSIFICATION2 0.018 0.027 0.659 0.510   0.025 0.027 0.940 0.347  
CLASSIFICATION3 -0.050 0.065 -0.766 0.444   -0.101 0.065 -1.555 0.120  
CLASSIFICATION4 0.218 0.175 1.242 0.214   0.175 0.168 1.038 0.299 . 
hspct2 0.503 0.118 4.256 0.000 *** 0.587 0.118 4.963 0.000 *** 
sexW 0.036 0.018 1.975 0.048 *  0.039 0.018 2.175 0.030  
transferredhours 0.002 0.001 2.851 0.004 **  0.002 0.001 2.433 0.015 * 
majorschool3 0.061 0.082 0.747 0.455   0.071 0.081 0.869 0.385  
majorschool4 -0.025 0.056 -0.441 0.660   -0.026 0.056 -0.456 0.649  
majorschool5 -0.179 0.127 -1.413 0.158   -0.225 0.127 -1.774 0.076  
majorschool9 0.290 0.342 0.849 0.396   0.241 0.339 0.710 0.478  
majorschoolC 0.113 0.113 1.003 0.316   0.109 0.113 0.964 0.335  
majorschoolE 0.071 0.053 1.324 0.185   0.064 0.054 1.191 0.234 * 
majorschoolJ 0.082 0.083 0.980 0.327   0.060 0.083 0.722 0.470  
majorschoolL 0.022 0.061 0.360 0.719   0.013 0.061 0.221 0.825 * 
majorschoolN 0.031 0.122 0.257 0.797   0.049 0.121 0.406 0.685  
majorschoolS 0.308 0.181 1.699 0.089 .  0.245 0.178 1.373 0.170  
majorschoolU 0.054 0.058 0.939 0.348   0.059 0.058 1.021 0.307 . 
C_HRS_UNDERTAKEN.y 0.036 0.004 8.288 < 2e-16 *** 0.036 0.004 8.280 < 2e-16   

Note. n = 6251; RMSE = 0.6625; df = 6117, R2 = .5140; *p < .05; **p < .01; ***p < .001 
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Table D8 Full regression output for random-effects models in the Chemistry course 
sequence (median split) before and after propensity-score adjustment 

Variable Unadjusted   Adjusted 
Estimate SE t p-value     Estimate SE t p-value   

Intercept -1.171 0.399 -2.936 <.001 *** -1.442 0.400 -3.611 0.000 *** 
High RP 0.156 0.103 1.507 0.077 .   0.151 0.104 1.450 0.159   
SAT equivalent 0.000 0.000 3.348 <.001 *** 0.000 0.000 3.349 0.001 *** 
derivationAI 0.174 0.237 0.734 0.476     0.262 0.234 1.119 0.263   
derivationA -0.050 0.047 -1.073 0.152     -0.046 0.046 -0.986 0.324   
derivationB2eH -0.026 0.123 -0.215 0.964     -0.029 0.124 -0.230 0.818   
derivationB -0.067 0.063 -1.059 0.130     -0.046 0.063 -0.733 0.464   
derivationF 0.031 0.077 0.405 0.306     0.136 0.076 1.783 0.075 . 
derivationHPI 0.005 0.236 0.020 0.401     0.159 0.238 0.666 0.505   
derivationH -0.044 0.049 -0.897 0.034 *   -0.050 0.049 -1.035 0.301   
derivationU -0.303 0.130 -2.328 0.013 *   -0.253 0.131 -1.931 0.054 . 
derivationW -0.004 0.046 -0.084 0.833     -0.008 0.046 -0.166 0.868   
motheredlevel1 -0.059 0.069 -0.857 0.812     -0.014 0.017 -0.841 0.400   
motheredlevel2 -0.096 0.064 -1.504 0.123     -0.060 0.069 -0.872 0.383   
motheredlevel3 -0.061 0.065 -0.950 0.608     -0.047 0.064 -0.737 0.461   
motheredlevel4 -0.067 0.062 -1.077 0.872     -0.018 0.065 -0.279 0.780   
motheredlevel5 -0.035 0.064 -0.551 0.953     -0.028 0.063 -0.450 0.653   
motheredlevel6 -0.057 0.068 -0.830 0.712     0.002 0.064 0.025 0.980   
motheredlevelU -0.065 0.092 -0.701 0.391     -0.019 0.068 -0.274 0.784   
fatheredlevel1 -0.011 0.073 -0.154 0.699     -0.027 0.092 -0.292 0.771   
fatheredlevel2 0.013 0.066 0.201 0.271     -0.029 0.073 -0.394 0.694   
fatheredlevel3 0.002 0.067 0.024 0.516     -0.012 0.066 -0.175 0.861   
fatheredlevel4 0.112 0.065 1.734 0.011 *   -0.035 0.067 -0.520 0.603   
fatheredlevel5 0.129 0.065 1.976 0.007 ** 0.077 0.065 1.198 0.231   
fatheredlevel6 0.179 0.074 2.432 0.029 *   0.094 0.065 1.439 0.150   
fatheredlevelU 0.116 0.090 1.289 0.774     0.124 0.073 1.682 0.093 . 
age -0.025 0.017 -1.474 0.002 ** 0.068 0.089 0.767 0.443   
class_zscore.x 0.858 0.013 66.479 <.001 *** 0.857 0.013 67.127 <.001 *** 
CLASSIFICATION2 0.024 0.026 0.894 0.302     0.031 0.026 1.172 0.241   
CLASSIFICATION3 -0.055 0.064 -0.854 0.932     -0.104 0.064 -1.622 0.105   
CLASSIFICATION4 0.204 0.173 1.180 0.921     0.164 0.166 0.988 0.323   
hspct2 0.486 0.117 4.172 0.000 *** 0.566 0.117 4.847 0.000 *** 
sexW 0.040 0.018 2.258 0.195     0.043 0.018 2.455 0.014 * 
transferredhours 0.002 0.001 2.643 0.002 ** 0.002 0.001 2.205 0.027 * 
majorschool3 0.092 0.081 1.136 0.870     0.094 0.080 1.170 0.242   
majorschool4 -0.022 0.055 -0.399 0.297     -0.023 0.055 -0.422 0.673   
majorschool5 -0.098 0.126 -0.782 0.143     -0.138 0.126 -1.101 0.271   
majorschool9 0.401 0.338 1.186 0.290     0.393 0.335 1.174 0.240   
majorschoolC 0.136 0.111 1.224 0.963     0.123 0.111 1.105 0.269   
majorschoolE 0.063 0.053 1.205 0.056 .   0.056 0.053 1.069 0.285   
majorschoolJ 0.072 0.083 0.863 0.840     0.044 0.083 0.532 0.595   
majorschoolL 0.028 0.060 0.467 0.037 *   0.016 0.060 0.259 0.796   
majorschoolN 0.036 0.121 0.299 0.829     0.058 0.119 0.489 0.625   
majorschoolS 0.278 0.179 1.554 0.618     0.203 0.176 1.153 0.249   
majorschoolU 0.063 0.057 1.104 0.112     0.066 0.057 1.154 0.249   
C_HRS_UNDERTAKEN.y 0.034 0.004 7.949 <.001 *** 0.034 0.004 7.989 0.000 *** 

Note. MSE = .42613; sp
2 = 0.08561; ss

2=0.05498; *p < .05; **p < .01; ***p < .001 
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Table D9 Full regression output for cluster-robust standard errors models in the 
Chemistry course sequence (median split) before and after adjustment 

Note. *p < .05; **p < .01; ***p < .001 

Variable Unadjusted   Adjusted 
Estimate SE d.f. p-value     Estimate SE d.f. p-value   

Intercept -0.758 0.354 47.7 0.038 *  -1.117 0.386 44.69 0.006 ** 
High RP 0.062 0.028 41.5 0.032 *  0.063 0.028 43.98 0.027 * 
SAT equivalent 0.000 0.000 54.3 0.001 **  0.000 0.000 48.45 0.003 ** 
derivationAI 0.219 0.162 7.5 0.217   0.291 0.215 5.29 0.232  
derivationA -0.034 0.036 38.9 0.352   -0.024 0.037 37.55 0.527  
derivationB2eH 0.030 0.130 18.7 0.818   0.027 0.119 19.07 0.823  
derivationB -0.042 0.059 45.2 0.480   -0.023 0.063 39.88 0.719  
derivationF 0.062 0.080 46.5 0.438   0.181 0.089 28.91 0.052 . 
derivationHPI 0.041 0.169 7.5 0.815   0.186 0.200 2.73 0.426  
derivationH -0.024 0.038 41.4 0.527   -0.025 0.038 38.74 0.514  
derivationU -0.278 0.136 17.0 0.056 .  -0.228 0.138 16.25 0.118  
derivationW 0.012 0.037 40.3 0.750   0.013 0.038 38.80 0.740  
motheredlevel1 -0.053 0.016 44.1 0.002 **  -0.037 0.019 39.67 0.057 . 
motheredlevel2 -0.083 0.074 39.4 0.268   -0.082 0.078 36.18 0.296  
motheredlevel3 -0.106 0.069 39.4 0.133   -0.056 0.075 36.06 0.462  
motheredlevel4 -0.059 0.077 40.2 0.442   -0.021 0.084 36.38 0.807  
motheredlevel5 -0.069 0.070 37.6 0.329   -0.035 0.077 34.48 0.651  
motheredlevel6 -0.041 0.072 38.4 0.570   -0.009 0.077 35.65 0.908  
motheredlevelU -0.059 0.073 40.9 0.420   -0.022 0.078 36.43 0.781  
fatheredlevel1 -0.077 0.102 30.7 0.456   -0.038 0.100 26.23 0.708  
fatheredlevel2 -0.012 0.092 39.9 0.893   -0.037 0.098 37.73 0.709  
fatheredlevel3 0.015 0.086 44.3 0.863   -0.007 0.089 40.80 0.938  
fatheredlevel4 0.010 0.091 44.1 0.914   -0.025 0.095 40.20 0.791  
fatheredlevel5 0.122 0.086 41.6 0.161   0.089 0.090 38.79 0.330  
fatheredlevel6 0.136 0.087 41.6 0.124   0.102 0.089 38.77 0.258  
fatheredlevelU 0.175 0.099 44.8 0.083 .  0.121 0.098 41.00 0.226  
age 0.130 0.117 33.4 0.274   0.076 0.114 26.28 0.508  
class_zscore.x 0.820 0.018 39.9 <.001 *** 0.821 0.019 36.34 <.001 *** 
CLASSIFICATION2 0.015 0.023 64.4 0.519   0.022 0.024 51.11 0.355  
CLASSIFICATION3 -0.036 0.074 43.0 0.626   -0.102 0.086 29.95 0.244  
CLASSIFICATION4 0.228 0.134 13.4 0.112   0.178 0.131 6.66 0.220  
hspct2 0.497 0.132 63.3 <.001 *** 0.571 0.135 49.17 <.001 *** 
sexW 0.036 0.019 53.6 0.069 .  0.039 0.020 48.37 0.059 . 
transferredhours 0.002 0.001 52.2 0.025 *  0.001 0.001 44.21 0.081 . 
majorschool3 0.057 0.080 58.2 0.478   0.065 0.086 34.69 0.453  
majorschool4 0.008 0.054 53.6 0.887   0.004 0.054 47.65 0.948  
majorschool5 -0.160 0.177 27.6 0.373   -0.182 0.166 17.62 0.287  
majorschool9 0.432 0.076 2.0 0.030 *  0.382 0.091 1.33 0.100 . 
majorschoolC 0.110 0.111 37.6 0.331   0.099 0.106 22.68 0.359  
majorschoolE 0.071 0.053 46.0 0.189   0.064 0.052 41.28 0.229  
majorschoolJ 0.076 0.091 45.0 0.410   0.025 0.092 35.33 0.791  
majorschoolL 0.018 0.061 56.7 0.770   0.010 0.058 47.79 0.871  
majorschoolN 0.098 0.153 39.8 0.524   0.103 0.147 37.48 0.488  
majorschoolS 0.248 0.099 10.6 0.030 *  0.170 0.125 4.60 0.238  
majorschoolU 0.067 0.056 55.2 0.233   0.073 0.058 48.50 0.208  
C_HRS_UNDERTAKEN.y 0.034 0.005 58.6 <.001 *** 0.034 0.005 52.10 <.001 *** 
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Table D10 Full regression output for fixed-effects models in the Chemistry course 
sequence (mean split) before and after propensity-score adjustment 

Variable Unadjusted   Adjusted 
Estimate SE t p-value     Estimate SE t p-value   

Intercept -1.194 0.405 -2.946 0.003 *** -1.360 0.387 -3.512 <.001 *** 
High RP 0.123 0.035 3.561 0.000 **   0.100 0.034 2.924 0.003 ** 
SAT equivalent 0.000 0.000 4.005 0.000 *** 0.000 0.000 4.015 0.000 *** 
derivationAI 0.189 0.240 0.790 0.429     0.106 0.236 0.448 0.654   
derivationA -0.042 0.047 -0.881 0.378     -0.054 0.047 -1.134 0.257   
derivationB2eH -0.025 0.125 -0.203 0.839     -0.165 0.124 -1.334 0.182   
derivationB -0.067 0.064 -1.041 0.298     -0.050 0.064 -0.779 0.436   
derivationF 0.050 0.078 0.642 0.521     0.008 0.076 0.108 0.914   
derivationHPI 0.010 0.239 0.042 0.967     0.005 0.244 0.019 0.985   
derivationH -0.048 0.050 -0.963 0.336     -0.059 0.050 -1.179 0.238   
derivationU -0.277 0.132 -2.107 0.035 *   -0.174 0.133 -1.306 0.192   
derivationW 0.002 0.047 0.033 0.974     -0.001 0.047 -0.028 0.977   
motheredlevel1 -0.051 0.070 -0.732 0.464     -0.025 0.070 -0.357 0.721   
motheredlevel2 -0.096 0.065 -1.481 0.139     -0.068 0.064 -1.054 0.292   
motheredlevel3 -0.052 0.066 -0.790 0.430     -0.018 0.065 -0.274 0.784   
motheredlevel4 -0.069 0.064 -1.083 0.279     -0.048 0.063 -0.772 0.440   
motheredlevel5 -0.037 0.065 -0.575 0.565     -0.012 0.064 -0.180 0.857   
motheredlevel6 -0.050 0.069 -0.723 0.470     -0.024 0.069 -0.347 0.729   
motheredlevelU -0.075 0.094 -0.801 0.423     -0.081 0.092 -0.877 0.381   
fatheredlevel1 -0.028 0.074 -0.377 0.706     -0.050 0.075 -0.675 0.500   
fatheredlevel2 -0.006 0.067 -0.091 0.928     -0.025 0.067 -0.371 0.710   
fatheredlevel3 -0.018 0.069 -0.259 0.796     -0.035 0.068 -0.510 0.610   
fatheredlevel4 0.105 0.066 1.601 0.109     0.071 0.066 1.084 0.278   
fatheredlevel5 0.120 0.067 1.805 0.071 .   0.092 0.067 1.381 0.167   
fatheredlevel6 0.167 0.075 2.235 0.025 *   0.127 0.075 1.697 0.090 . 
fatheredlevelU 0.110 0.091 1.210 0.226     0.111 0.090 1.227 0.220   
age -0.051 0.017 -2.977 0.003 **   -0.049 0.016 -3.064 0.002 ** 
class_zscore.x 0.848 0.013 65.014 <.001 *** 0.841 0.013 63.485 <.001 *** 
CLASSIFICATION2 0.019 0.027 0.719 0.472     0.009 0.027 0.318 0.750   
CLASSIFICATION3 -0.049 0.065 -0.761 0.447     -0.041 0.065 -0.634 0.526   
CLASSIFICATION4 0.212 0.175 1.213 0.225     -0.058 0.160 -0.363 0.717   
hspct2 0.499 0.118 4.224 <.001 *** 0.541 0.118 4.600 <.001 *** 
sexW 0.036 0.018 2.011 0.044 *   0.033 0.018 1.838 0.066 . 
transferredhours 0.002 0.001 2.844 0.004 **   0.003 0.001 3.554 <.001 *** 
majorschool3 0.059 0.082 0.729 0.466     0.058 0.082 0.704 0.482   
majorschool4 -0.026 0.056 -0.470 0.639     -0.018 0.057 -0.323 0.747   
majorschool5 -0.174 0.127 -1.373 0.170     -0.170 0.128 -1.329 0.184   
majorschool9 0.293 0.341 0.859 0.390     0.215 0.310 0.693 0.488   
majorschoolC 0.111 0.113 0.987 0.324     0.080 0.113 0.713 0.476   
majorschoolE 0.070 0.053 1.305 0.192     0.076 0.055 1.392 0.164   
majorschoolJ 0.077 0.083 0.928 0.353     0.090 0.084 1.074 0.283   
majorschoolL 0.016 0.061 0.269 0.788     -0.003 0.062 -0.049 0.961   
majorschoolN 0.029 0.122 0.235 0.814     0.094 0.123 0.765 0.444   
majorschoolS 0.307 0.181 1.694 0.090 .   0.266 0.184 1.448 0.148   
majorschoolU 0.052 0.058 0.898 0.369     0.046 0.059 0.775 0.438   
C_HRS_UNDERTAKEN.y 0.036 0.004 8.301 <.001 *** 0.039 0.004 8.947 <.001 *** 

Note. n = 6251; RMSE = 0.6622; df = 6117, R2 = .5143; *p < .05; **p < .01; ***p < .001 
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Table D11 Full regression output for random-effects models in the Chemistry course 
sequence (mean split) before and after propensity-score adjustment 

Variable Unadjusted   Adjusted 
Estimate SE t p-value     Estimate SE t p-value   

Intercept -1.244 0.400 -3.113 0.002 ** -1.309 0.378 -3.466 <.001 *** 
High RP 0.263 0.091 2.890 0.007 ** 0.241 0.086 2.810 0.009 ** 
SAT equivalent 0.000 0.000 3.333 <.001 *** 0.000 0.000 3.441 <.001 *** 
derivationAI 0.172 0.237 0.728 0.467     0.121 0.233 0.521 0.602   
derivationA -0.050 0.047 -1.073 0.283     -0.063 0.047 -1.342 0.180   
derivationB2eH -0.029 0.123 -0.233 0.816     -0.173 0.122 -1.413 0.158   
derivationB -0.066 0.063 -1.057 0.291     -0.048 0.063 -0.757 0.449   
derivationF 0.032 0.077 0.418 0.676     -0.009 0.075 -0.123 0.902   
derivationHPI 0.005 0.236 0.022 0.983     -0.007 0.241 -0.031 0.976   
derivationH -0.044 0.049 -0.899 0.369     -0.053 0.049 -1.080 0.280   
derivationU -0.304 0.130 -2.341 0.019 *   -0.173 0.132 -1.316 0.188   
derivationW -0.004 0.046 -0.080 0.936     -0.008 0.046 -0.176 0.860   
motheredlevel1 -0.059 0.069 -0.858 0.391     -0.026 0.016 -1.621 0.105   
motheredlevel2 -0.096 0.064 -1.503 0.133     -0.032 0.068 -0.475 0.635   
motheredlevel3 -0.061 0.065 -0.946 0.344     -0.069 0.063 -1.103 0.270   
motheredlevel4 -0.067 0.062 -1.080 0.280     -0.032 0.064 -0.502 0.616   
motheredlevel5 -0.035 0.064 -0.553 0.580     -0.049 0.062 -0.789 0.430   
motheredlevel6 -0.056 0.068 -0.824 0.410     -0.012 0.063 -0.186 0.852   
motheredlevelU -0.065 0.092 -0.706 0.480     -0.032 0.067 -0.475 0.635   
fatheredlevel1 -0.012 0.073 -0.165 0.869     -0.072 0.091 -0.791 0.429   
fatheredlevel2 0.012 0.066 0.188 0.851     -0.026 0.073 -0.359 0.720   
fatheredlevel3 0.001 0.067 0.008 0.993     0.000 0.066 0.004 0.997   
fatheredlevel4 0.111 0.065 1.722 0.085 .   -0.010 0.067 -0.153 0.878   
fatheredlevel5 0.128 0.065 1.961 0.050 *   0.083 0.064 1.292 0.196   
fatheredlevel6 0.178 0.074 2.419 0.016 *   0.109 0.065 1.681 0.093 . 
fatheredlevelU 0.115 0.090 1.285 0.199     0.148 0.073 2.023 0.043 * 
age -0.025 0.017 -1.450 0.147     0.128 0.089 1.435 0.151   
class_zscore.x 0.858 0.013 66.512 <.001 *** 0.853 0.013 65.096 <.001 *** 
CLASSIFICATION2 0.024 0.026 0.906 0.365     0.013 0.026 0.499 0.618   
CLASSIFICATION3 -0.055 0.064 -0.853 0.394     -0.044 0.064 -0.697 0.486   
CLASSIFICATION4 0.202 0.173 1.168 0.243     0.031 0.159 0.192 0.847   
hspct2 0.484 0.117 4.150 <.001 *** 0.533 0.116 4.593 <.001 *** 
sexW 0.040 0.018 2.259 0.024 *   0.038 0.018 2.132 0.033 * 
transferredhours 0.002 0.001 2.642 0.008 ** 0.003 0.001 3.273 0.001 ** 
majorschool3 0.092 0.081 1.136 0.256     0.093 0.081 1.151 0.250   
majorschool4 -0.023 0.055 -0.410 0.682     -0.018 0.056 -0.328 0.743   
majorschool5 -0.097 0.126 -0.775 0.438     -0.082 0.127 -0.647 0.517   
majorschool9 0.399 0.338 1.181 0.238     0.408 0.307 1.328 0.184   
majorschoolC 0.136 0.111 1.223 0.222     0.107 0.111 0.966 0.334   
majorschoolE 0.064 0.053 1.211 0.226     0.070 0.054 1.305 0.192   
majorschoolJ 0.070 0.083 0.842 0.400     0.085 0.083 1.022 0.307   
majorschoolL 0.027 0.060 0.454 0.650     0.014 0.061 0.223 0.823   
majorschoolN 0.037 0.121 0.303 0.762     0.109 0.122 0.891 0.373   
majorschoolS 0.278 0.179 1.556 0.120     0.229 0.181 1.265 0.206   
majorschoolU 0.062 0.057 1.095 0.273     0.059 0.058 1.019 0.308   
HRS_UNDERTAKEN.y 0.034 0.004 7.947 <.001 *** 0.036 0.004 8.542 <.001 *** 

Note. MSE = .4260; sp
2 = 0.0749; ss

2=0.05260; *p < .05; **p < .01; ***p < .001 
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Table D12 Full regression output for cluster-robust standard errors models in the 
Chemistry course sequence (mean split) before and after adjustment  

Note. *p < .05; **p < .01; ***p < .001 

Variable Unadjusted   Adjusted 
Estimate SE d.f. p-value     Estimate SE d.f. p-value   

Intercept -0.801 0.358 48.2 0.030 *   -1.014 0.416 12.74 0.030 * 
High RP 0.057 0.028 56.1 0.047 *   0.055 0.029 49.30 0.066 . 
SAT equivalent 0.000 0.000 53.6 <0.001 *** 0.000 0.000 55.73 <0.001 *** 
derivationAI 0.207 0.165 7.5 0.247     0.196 0.116 1.89 0.241   
derivationA -0.036 0.036 38.9 0.322     -0.054 0.041 24.74 0.199   
derivationB2eH 0.017 0.128 18.7 0.893     -0.099 0.165 6.06 0.570   
derivationB -0.046 0.060 45.3 0.445     -0.032 0.062 40.52 0.608   
derivationF 0.061 0.081 46.5 0.456     0.014 0.113 35.45 0.902   
derivationHPI 0.037 0.176 7.4 0.840     0.019 0.192 7.18 0.923   
derivationH -0.026 0.038 41.5 0.492     -0.040 0.039 28.60 0.321   
derivationU -0.278 0.136 16.9 0.056 .   -0.170 0.168 4.64 0.362   
derivationW 0.010 0.037 40.3 0.783     0.001 0.040 25.45 0.971   
motheredlevel1 -0.051 0.016 45.0 0.003 **   -0.044 0.018 7.98 0.035 * 
motheredlevel2 -0.085 0.074 39.4 0.256     -0.067 0.083 36.81 0.426   
motheredlevel3 -0.107 0.069 39.4 0.128     -0.093 0.078 34.28 0.238   
motheredlevel4 -0.058 0.077 40.2 0.452     -0.040 0.082 32.60 0.623   
motheredlevel5 -0.069 0.070 37.5 0.334     -0.063 0.079 30.86 0.429   
motheredlevel6 -0.040 0.072 38.4 0.579     -0.031 0.081 31.54 0.701   
motheredlevelU -0.058 0.072 40.9 0.429     -0.048 0.081 34.20 0.555   
fatheredlevel1 -0.072 0.105 30.7 0.493     -0.085 0.101 27.66 0.406   
fatheredlevel2 -0.013 0.092 39.9 0.885     -0.025 0.096 44.04 0.793   
fatheredlevel3 0.017 0.087 44.3 0.849     0.012 0.093 45.20 0.900   
fatheredlevel4 0.012 0.092 44.1 0.895     0.006 0.096 43.61 0.953   
fatheredlevel5 0.124 0.086 41.6 0.160     0.104 0.090 42.38 0.251   
fatheredlevel6 0.137 0.088 41.6 0.125     0.125 0.093 42.68 0.184   
fatheredlevelU 0.176 0.099 44.8 0.082 .   0.160 0.103 46.31 0.127   
age 0.127 0.117 33.4 0.286     0.138 0.115 34.66 0.238   
class_zscore.x 0.821 0.018 39.6 <0.001 *** 0.814 0.018 48.26 <0.001 *** 
CLASSIFICATION2 0.018 0.024 64.4 0.452     0.008 0.027 59.57 0.754   
CLASSIFICATION3 -0.036 0.074 43.0 0.626     -0.025 0.080 23.51 0.760   
CLASSIFICATION4 0.226 0.132 13.4 0.110     -0.011 0.169 3.13 0.953   
hspct2 0.492 0.130 63.5 <0.001 *** 0.545 0.127 38.99 <0.001 *** 
sexW 0.035 0.019 53.7 0.073 .   0.034 0.021 54.06 0.110   
transferredhours 0.002 0.001 51.7 0.025 *   0.002 0.001 59.08 0.010 * 
majorschool3 0.061 0.080 58.2 0.451     0.070 0.089 49.11 0.435   
majorschool4 0.005 0.053 53.6 0.919     0.010 0.057 50.79 0.866   
majorschool5 -0.157 0.177 27.6 0.381     -0.120 0.161 20.02 0.463   
majorschool9 0.436 0.076 2.0 0.030 *   0.419 0.100 1.19 0.118   
majorschoolC 0.110 0.111 37.6 0.329     0.078 0.110 26.20 0.485   
majorschoolE 0.069 0.053 46.1 0.201     0.080 0.057 44.01 0.168   
majorschoolJ 0.064 0.091 44.9 0.491     0.089 0.088 39.06 0.316   
majorschoolL 0.014 0.061 56.8 0.820     -0.005 0.068 58.54 0.941   
majorschoolN 0.103 0.153 39.8 0.503     0.183 0.150 34.72 0.231   
majorschoolS 0.241 0.102 10.6 0.038 *   0.169 0.096 9.91 0.108   
majorschoolU 0.067 0.055 55.2 0.233     0.066 0.061 54.52 0.284   
C_HRS_UNDERTAKEN.y 0.034 0.005 58.8 <0.001 *** 0.037 0.005 71.70 <0.001 *** 
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Table D13 Full regression output for fixed-effects models in the Economics course 
sequence (median split) before and after propensity-score adjustment 

Variable Unadjusted   Adjusted 
Estimate SE t p-value     Estimate SE t p-value   

Intercept -0.568 0.944 -0.602 0.547     -0.634 0.959 -0.661 0.509   
High RP 0.074 0.064 1.167 0.243     0.086 0.064 1.350 0.177   
SAT equivalent 0.001 0.000 4.689 <.001 *** 0.001 0.000 4.712 <.001 *** 
derivationAI 0.136 0.243 0.559 0.576     0.149 0.245 0.606 0.545   
derivationA -0.100 0.088 -1.129 0.259     -0.082 0.088 -0.938 0.348   
derivationB2eH -0.064 0.232 -0.277 0.781     0.049 0.237 0.206 0.837   
derivationB -0.152 0.116 -1.308 0.191     -0.160 0.115 -1.385 0.166   
derivationF 0.074 0.121 0.614 0.539     0.043 0.120 0.356 0.722   
derivationHPI 0.133 0.369 0.361 0.718     0.153 0.471 0.325 0.746   
derivationH -0.123 0.091 -1.353 0.176     -0.112 0.090 -1.234 0.217   
derivationU -0.307 0.232 -1.322 0.186     -0.276 0.231 -1.199 0.231   
derivationW -0.012 0.084 -0.147 0.883     -0.003 0.084 -0.041 0.968   
motheredlevel1 0.151 0.134 1.130 0.258     0.205 0.131 1.559 0.119   
motheredlevel2 0.020 0.111 0.184 0.854     0.065 0.108 0.602 0.547   
motheredlevel3 0.162 0.115 1.408 0.159     0.216 0.112 1.931 0.054 . 
motheredlevel4 0.104 0.110 0.938 0.348     0.160 0.107 1.494 0.135   
motheredlevel5 0.150 0.113 1.324 0.186     0.207 0.110 1.878 0.060 . 
motheredlevel6 0.171 0.122 1.405 0.160     0.222 0.119 1.863 0.063 . 
motheredlevelU 0.300 0.169 1.770 0.077 .   0.405 0.168 2.408 0.016 * 
fatheredlevel1 -0.117 0.134 -0.870 0.385     -0.198 0.134 -1.477 0.140   
fatheredlevel2 -0.069 0.114 -0.607 0.544     -0.138 0.112 -1.231 0.218   
fatheredlevel3 -0.101 0.119 -0.843 0.399     -0.156 0.118 -1.324 0.185   
fatheredlevel4 0.013 0.114 0.116 0.908     -0.037 0.112 -0.330 0.741   
fatheredlevel5 -0.013 0.115 -0.112 0.910     -0.064 0.113 -0.567 0.571   
fatheredlevel6 -0.206 0.141 -1.465 0.143     -0.261 0.139 -1.877 0.061 . 
fatheredlevelU -0.249 0.164 -1.519 0.129     -0.348 0.163 -2.131 0.033 * 
age -0.072 0.028 -2.578 0.010 **   -0.072 0.028 -2.568 0.010 * 
class_zscore.x 0.671 0.020 34.102 <.001 *** 0.668 0.020 33.885 <.001 *** 
CLASSIFICATION2 0.018 0.044 0.411 0.681     0.023 0.044 0.517 0.605   
CLASSIFICATION3 -0.055 0.096 -0.579 0.562     -0.062 0.094 -0.660 0.510   
CLASSIFICATION4 -0.042 0.197 -0.212 0.832     -0.034 0.198 -0.174 0.862   
hspct2 0.545 0.124 4.415 0.000 *** 0.552 0.124 4.469 0.000 *** 
sexW 0.057 0.029 1.961 0.050 *   0.059 0.029 2.026 0.043 * 
transferredhours 0.002 0.001 1.604 0.109     0.002 0.001 1.721 0.085 . 
majorschool3 0.074 0.203 0.366 0.715     0.116 0.204 0.568 0.570   
majorschool4 0.008 0.074 0.110 0.913     -0.010 0.074 -0.132 0.895   
majorschool5 0.083 0.157 0.530 0.596     0.076 0.156 0.485 0.628   
majorschool9 0.138 0.423 0.327 0.744     0.078 0.413 0.189 0.850   
majorschoolC 0.074 0.091 0.806 0.420     0.106 0.091 1.167 0.243   
majorschoolE 0.148 0.058 2.547 0.011 *   0.153 0.058 2.642 0.008 ** 
majorschoolJ -0.369 0.300 -1.230 0.219     -0.776 0.309 -2.514 0.012 * 
majorschoolL 0.077 0.043 1.811 0.070 .   0.076 0.043 1.783 0.075 . 
majorschoolN -0.197 0.299 -0.659 0.510     -0.224 0.295 -0.759 0.448   
majorschoolS -0.429 0.242 -1.770 0.077 .   -0.351 0.247 -1.421 0.155   
majorschoolU 0.049 0.042 1.180 0.238     0.061 0.041 1.458 0.145   
C_HRS_UNDERTAKEN.y 0.027 0.007 4.101 <.001 *** 0.028 0.007 4.234 <.001 *** 

Note. n = 2766; RMSE = 0.7124; df = 2688, R2 = .4257; *p < .05; **p < .01; ***p < .001 
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Table D14 Full regression output for random-effects models in the Economics course 
sequence (median split) before and after propensity-score adjustment 

Variable Unadjusted   Adjusted 
Estimate SE t p-value     Estimate SE t p-value   

Intercept -1.010 0.611 -1.653 0.099 .   -0.997 0.612 -1.629 0.104   
High RP 0.083 0.045 1.857 0.077 .   0.082 0.044 1.840 0.081 . 
SAT equivalent 0.001 0.000 4.704 <.001 *** 0.001 0.000 4.704 <.001 *** 
derivationAI 0.124 0.242 0.514 0.608     0.136 0.245 0.558 0.577   
derivationA -0.092 0.088 -1.045 0.296     -0.075 0.087 -0.860 0.390   
derivationB2eH -0.067 0.232 -0.290 0.772     0.040 0.236 0.168 0.866   
derivationB -0.135 0.116 -1.168 0.243     -0.147 0.115 -1.276 0.202   
derivationF 0.062 0.120 0.519 0.604     0.037 0.119 0.307 0.759   
derivationHPI 0.139 0.367 0.378 0.706     0.156 0.470 0.332 0.740   
derivationH -0.121 0.091 -1.334 0.182     -0.109 0.090 -1.212 0.226   
derivationU -0.319 0.232 -1.377 0.169     -0.295 0.230 -1.283 0.200   
derivationW -0.003 0.084 -0.042 0.967     0.005 0.083 0.062 0.951   
motheredlevel1 0.120 0.133 0.902 0.367     -0.057 0.027 -2.090 0.037 * 
motheredlevel2 0.008 0.110 0.070 0.944     0.181 0.131 1.384 0.166   
motheredlevel3 0.149 0.114 1.302 0.193     0.058 0.108 0.540 0.589   
motheredlevel4 0.087 0.110 0.789 0.430     0.209 0.111 1.874 0.061 . 
motheredlevel5 0.133 0.113 1.182 0.237     0.149 0.107 1.395 0.163   
motheredlevel6 0.163 0.121 1.346 0.178     0.196 0.110 1.785 0.074 . 
motheredlevelU 0.289 0.169 1.715 0.086 .   0.220 0.119 1.850 0.064 . 
fatheredlevel1 -0.096 0.133 -0.719 0.472     0.399 0.167 2.381 0.017 * 
fatheredlevel2 -0.046 0.113 -0.402 0.688     -0.171 0.133 -1.285 0.199   
fatheredlevel3 -0.078 0.119 -0.655 0.513     -0.110 0.112 -0.980 0.327   
fatheredlevel4 0.037 0.113 0.329 0.742     -0.127 0.117 -1.087 0.277   
fatheredlevel5 0.011 0.114 0.100 0.920     -0.011 0.111 -0.097 0.922   
fatheredlevel6 -0.172 0.140 -1.230 0.219     -0.037 0.112 -0.327 0.744   
fatheredlevelU -0.234 0.163 -1.434 0.152     -0.225 0.138 -1.628 0.104   
age -0.054 0.027 -1.995 0.046 *   -0.331 0.162 -2.038 0.042 * 
class_zscore.x 0.670 0.020 34.183 <.001 *** 0.666 0.020 33.963 <.001 *** 
CLASSIFICATION2 0.036 0.044 0.814 0.415     0.040 0.044 0.921 0.357   
CLASSIFICATION3 -0.023 0.094 -0.249 0.804     -0.027 0.093 -0.296 0.767   
CLASSIFICATION4 -0.009 0.193 -0.046 0.964     0.008 0.194 0.042 0.966   
hspct2 0.561 0.123 4.577 <.001 *** 0.568 0.123 4.628 <.001 *** 
sexW 0.054 0.029 1.864 0.062 .   0.056 0.029 1.925 0.054 . 
transferredhours 0.002 0.001 1.714 0.087 .   0.002 0.001 1.828 0.068 . 
majorschool3 0.083 0.202 0.412 0.680     0.130 0.204 0.639 0.523   
majorschool4 0.043 0.074 0.580 0.562     0.024 0.073 0.330 0.741   
majorschool5 0.108 0.156 0.694 0.488     0.101 0.155 0.651 0.515   
majorschool9 0.171 0.415 0.413 0.680     0.107 0.408 0.261 0.794   
majorschoolC 0.096 0.091 1.061 0.289     0.127 0.090 1.402 0.161   
majorschoolE 0.186 0.057 3.258 <.001 ** 0.190 0.057 3.315 <.001 *** 
majorschoolJ -0.370 0.299 -1.238 0.216     -0.807 0.308 -2.622 0.009 ** 
majorschoolL 0.097 0.042 2.341 0.019 *   0.095 0.042 2.287 0.022 * 
majorschoolN -0.148 0.298 -0.496 0.620     -0.153 0.294 -0.521 0.602   
majorschoolS -0.436 0.242 -1.802 0.072 .   -0.346 0.247 -1.405 0.160   
majorschoolU 0.070 0.041 1.709 0.088 .   0.081 0.041 1.957 0.050 . 
C_HRS_UNDERTAKEN.y 0.026 0.007 4.030 <.001 *** 0.027 0.007 4.178 <.001 *** 

Note. MSE = .50533; sp
2 = 0.007757; ss

2=0.001149; *p < .05; **p < .01; ***p < .001 



 
 
 

294 

Table D15 Full regression output for cluster-robust standard errors models in the 
Economics course sequence (median split) before and after adjustment 

Note. *p < .05; **p < .01; ***p < .001 

Variable Unadjusted   Adjusted 
Estimate SE d.f. p-value     Estimate SE d.f. p-value   

Intercept -1.049 0.639 81.0 0.104     -1.078 0.649 74.26 0.101   
High RP 0.048 0.037 63.6 0.198     0.047 0.037 63.22 0.214   
SAT equivalent 0.001 0.000 69.2 <.001 *** 0.001 0.000 65.84 <.001 *** 
derivationAI 0.143 0.206 11.3 0.501     0.160 0.207 11.05 0.457   
derivationA -0.086 0.087 41.3 0.330     -0.069 0.086 38.78 0.429   
derivationB2eH -0.075 0.281 10.7 0.794     0.031 0.311 8.65 0.923   
derivationB -0.155 0.125 46.1 0.222     -0.165 0.130 37.98 0.212   
derivationF 0.070 0.133 46.2 0.605     0.045 0.130 29.66 0.729   
derivationHPI 0.090 0.332 3.4 0.803     0.105 0.333 3.36 0.772   
derivationH -0.122 0.089 43.0 0.175     -0.111 0.087 40.57 0.209   
derivationU -0.321 0.222 10.7 0.176     -0.301 0.253 6.69 0.274   
derivationW -0.004 0.087 38.0 0.967     0.005 0.085 35.77 0.950   
motheredlevel1 -0.055 0.027 79.4 0.048 *   -0.056 0.028 74.85 0.051 . 
motheredlevel2 0.129 0.141 44.3 0.364     0.189 0.151 39.45 0.216   
motheredlevel3 0.005 0.110 40.3 0.963     0.056 0.118 31.27 0.637   
motheredlevel4 0.146 0.111 44.3 0.196     0.208 0.118 32.33 0.087 . 
motheredlevel5 0.092 0.101 40.8 0.367     0.155 0.106 29.02 0.156   
motheredlevel6 0.135 0.104 42.5 0.204     0.198 0.110 30.14 0.080 . 
motheredlevelU 0.164 0.115 47.3 0.161     0.223 0.120 35.80 0.071 . 
fatheredlevel1 0.283 0.179 37.4 0.121     0.389 0.192 31.13 0.052 . 
fatheredlevel2 -0.086 0.150 39.6 0.567     -0.161 0.155 38.09 0.305   
fatheredlevel3 -0.047 0.113 45.4 0.681     -0.111 0.118 36.48 0.352   
fatheredlevel4 -0.073 0.116 48.6 0.536     -0.124 0.125 39.73 0.326   
fatheredlevel5 0.041 0.112 44.3 0.717     -0.009 0.119 35.56 0.939   
fatheredlevel6 0.017 0.111 45.1 0.882     -0.033 0.118 36.61 0.781   
fatheredlevelU -0.168 0.135 56.4 0.220     -0.222 0.137 46.88 0.111   
age -0.210 0.176 37.6 0.241     -0.304 0.190 32.00 0.119   
class_zscore.x 0.666 0.024 71.2 <.001 *** 0.662 0.023 67.99 <.001 *** 
CLASSIFICATION2 0.037 0.045 72.6 0.417     0.043 0.047 68.20 0.358   
CLASSIFICATION3 -0.007 0.096 60.3 0.941     -0.008 0.099 41.83 0.933   
CLASSIFICATION4 0.007 0.164 19.3 0.964     0.026 0.160 16.20 0.875   
hspct2 0.603 0.143 61.6 <.001 *** 0.609 0.139 57.31 <.001 *** 
sexW 0.056 0.028 63.9 0.051 .   0.057 0.029 59.41 0.057 . 
transferredhours 0.002 0.001 72.7 0.121     0.002 0.001 69.77 0.118   
majorschool3 0.074 0.167 7.6 0.670     0.119 0.215 6.86 0.596   
majorschool4 0.042 0.077 76.5 0.591     0.024 0.080 53.48 0.762   
majorschool5 0.133 0.128 17.6 0.313     0.126 0.126 15.48 0.333   
majorschool9 0.222 0.428 2.1 0.654     0.160 0.282 1.45 0.646   
majorschoolC 0.111 0.088 38.6 0.217     0.143 0.085 34.17 0.101   
majorschoolE 0.196 0.062 65.1 0.002 **   0.202 0.063 55.54 0.002 ** 
majorschoolJ -0.366 0.352 5.5 0.342     -0.797 0.658 1.55 0.379   
majorschoolL 0.109 0.040 65.8 0.008 **   0.109 0.040 66.88 0.009 ** 
majorschoolN -0.131 0.159 5.4 0.443     -0.132 0.236 3.31 0.612   
majorschoolS -0.384 0.311 6.7 0.259     -0.293 0.440 5.34 0.533   
majorschoolU 0.080 0.045 65.0 0.079 .   0.091 0.044 58.84 0.044 * 
C_HRS_UNDERTAKEN.y 0.026 0.007 75.3 <.001 *** 0.027 0.007 70.34 <.001 *** 
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Table D16 Full regression output for fixed-effects models in the Economics course 
sequence (mean split) before and after propensity-score adjustment 

Variable Unadjusted   Adjusted 
Estimate SE t p-value     Estimate SE t p-value   

Intercept -0.650 0.946 -0.687 0.492     -0.638 0.933 -0.684 0.494   
High RP 0.159 0.094 1.701 0.089 .   0.159 0.093 1.706 0.088 . 
SAT equivalent 0.001 0.000 4.710 <.001 *** 0.001 0.000 4.706 <.001 *** 
derivationAI 0.133 0.243 0.549 0.583     0.144 0.248 0.583 0.560   
derivationA -0.101 0.088 -1.147 0.251     -0.094 0.088 -1.070 0.285   
derivationB2eH -0.066 0.232 -0.285 0.775     0.053 0.238 0.224 0.822   
derivationB -0.151 0.116 -1.302 0.193     -0.175 0.115 -1.516 0.130   
derivationF 0.072 0.121 0.597 0.551     0.042 0.121 0.345 0.730   
derivationHPI 0.132 0.368 0.359 0.720     0.149 0.474 0.314 0.753   
derivationH -0.124 0.091 -1.362 0.173     -0.120 0.091 -1.316 0.188   
derivationU -0.300 0.232 -1.292 0.196     -0.286 0.230 -1.245 0.213   
derivationW -0.013 0.084 -0.151 0.880     -0.010 0.084 -0.113 0.910   
motheredlevel1 0.150 0.133 1.122 0.262     0.200 0.131 1.526 0.127   
motheredlevel2 0.020 0.111 0.184 0.854     0.051 0.108 0.474 0.636   
motheredlevel3 0.162 0.115 1.416 0.157     0.204 0.112 1.817 0.069 . 
motheredlevel4 0.103 0.110 0.932 0.352     0.143 0.108 1.330 0.183   
motheredlevel5 0.150 0.113 1.328 0.184     0.194 0.111 1.754 0.079 . 
motheredlevel6 0.173 0.122 1.422 0.155     0.211 0.120 1.763 0.078 . 
motheredlevelU 0.299 0.169 1.765 0.078 .   0.394 0.169 2.335 0.020 * 
fatheredlevel1 -0.109 0.134 -0.812 0.417     -0.140 0.134 -1.047 0.295   
fatheredlevel2 -0.068 0.114 -0.593 0.554     -0.114 0.113 -1.012 0.312   
fatheredlevel3 -0.099 0.119 -0.828 0.408     -0.133 0.118 -1.128 0.260   
fatheredlevel4 0.016 0.114 0.141 0.888     -0.006 0.112 -0.053 0.958   
fatheredlevel5 -0.011 0.115 -0.097 0.922     -0.038 0.114 -0.331 0.741   
fatheredlevel6 -0.205 0.141 -1.454 0.146     -0.242 0.139 -1.738 0.082 . 
fatheredlevelU -0.243 0.164 -1.484 0.138     -0.322 0.164 -1.968 0.049 * 
age -0.072 0.028 -2.591 0.010 **   -0.074 0.028 -2.649 0.008 ** 
class_zscore.x 0.671 0.020 34.129 <.001 *** 0.672 0.020 33.943 <.001 *** 
CLASSIFICATION2 0.019 0.044 0.429 0.668     0.017 0.044 0.389 0.698   
CLASSIFICATION3 -0.057 0.096 -0.598 0.550     -0.041 0.094 -0.431 0.667   
CLASSIFICATION4 -0.033 0.197 -0.166 0.868     -0.020 0.196 -0.101 0.920   
hspct2 0.542 0.123 4.392 <.001 *** 0.539 0.124 4.342 <.001 *** 
sexW 0.058 0.029 1.990 0.047 *   0.059 0.029 2.028 0.043 * 
transferredhours 0.002 0.001 1.578 0.115     0.002 0.001 1.801 0.072 . 
majorschool3 0.072 0.203 0.353 0.724     0.113 0.206 0.546 0.585   
majorschool4 0.004 0.074 0.051 0.959     0.003 0.074 0.035 0.972   
majorschool5 0.080 0.157 0.513 0.608     0.060 0.155 0.385 0.700   
majorschool9 0.129 0.423 0.304 0.761     -0.054 0.401 -0.135 0.893   
majorschoolC 0.071 0.091 0.780 0.436     0.088 0.091 0.966 0.334   
majorschoolE 0.148 0.058 2.550 0.011 *   0.151 0.058 2.596 0.009 ** 
majorschoolJ -0.369 0.300 -1.229 0.219     -0.805 0.305 -2.638 0.008 ** 
majorschoolL 0.075 0.043 1.753 0.080 .   0.071 0.043 1.660 0.097 . 
majorschoolN -0.198 0.299 -0.661 0.509     -0.249 0.297 -0.839 0.401   
majorschoolS -0.425 0.242 -1.756 0.079 .   -0.380 0.247 -1.536 0.125   
majorschoolU 0.048 0.042 1.164 0.245     0.050 0.042 1.211 0.226   
C_HRS_UNDERTAKEN.y 0.027 0.007 4.086 <.001 *** 0.027 0.007 4.044 <.001 *** 

Note. n = 2766; RMSE = 0.7122; df = 2688, R2 = .4261; *p < .05; **p < .01; ***p < .001 
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Table D17 Full regression output for random-effects models in the Economics course 
sequence (mean split) before and after propensity-score adjustment 

Variable Unadjusted   Adjusted 
Estimate SE t p-value     Estimate SE t p-value   

Intercept -1.039 0.610 -1.703 0.089 .   -0.970 0.614 -1.581 0.114   
High RP 0.101 0.043 2.356 0.028 *   0.103 0.045 2.309 0.031 * 
SAT equivalent 0.001 0.000 4.716 0.000 *** 0.001 0.000 4.657 <.001 *** 
derivationAI 0.126 0.242 0.521 0.603     0.135 0.247 0.545 0.586   
derivationA -0.092 0.088 -1.051 0.293     -0.087 0.088 -0.994 0.321   
derivationB2eH -0.065 0.232 -0.281 0.779     0.052 0.237 0.218 0.828   
derivationB -0.135 0.116 -1.164 0.245     -0.159 0.115 -1.378 0.168   
derivationF 0.062 0.120 0.517 0.605     0.036 0.120 0.297 0.766   
derivationHPI 0.142 0.367 0.386 0.700     0.161 0.473 0.340 0.734   
derivationH -0.120 0.091 -1.328 0.184     -0.116 0.090 -1.287 0.198   
derivationU -0.317 0.232 -1.368 0.171     -0.311 0.229 -1.359 0.174   
derivationW -0.004 0.084 -0.043 0.966     -0.001 0.084 -0.006 0.995   
motheredlevel1 0.120 0.133 0.904 0.366     -0.057 0.027 -2.077 0.038 * 
motheredlevel2 0.007 0.110 0.067 0.947     0.172 0.131 1.316 0.188   
motheredlevel3 0.148 0.114 1.298 0.194     0.042 0.108 0.391 0.696   
motheredlevel4 0.086 0.110 0.783 0.434     0.192 0.112 1.720 0.085 . 
motheredlevel5 0.132 0.113 1.175 0.240     0.130 0.107 1.207 0.227   
motheredlevel6 0.163 0.121 1.347 0.178     0.180 0.110 1.630 0.103   
motheredlevelU 0.289 0.169 1.714 0.087 .   0.204 0.119 1.710 0.087 . 
fatheredlevel1 -0.096 0.133 -0.725 0.468     0.384 0.168 2.285 0.022 * 
fatheredlevel2 -0.046 0.113 -0.409 0.683     -0.121 0.133 -0.914 0.361   
fatheredlevel3 -0.078 0.119 -0.656 0.512     -0.087 0.112 -0.774 0.439   
fatheredlevel4 0.036 0.113 0.321 0.748     -0.107 0.117 -0.912 0.362   
fatheredlevel5 0.011 0.114 0.094 0.925     0.017 0.111 0.149 0.881   
fatheredlevel6 -0.173 0.140 -1.233 0.218     -0.013 0.113 -0.112 0.911   
fatheredlevelU -0.235 0.163 -1.439 0.150     -0.208 0.139 -1.496 0.135   
age -0.053 0.027 -1.967 0.049 *   -0.310 0.163 -1.902 0.057 . 
class_zscore.x 0.669 0.020 34.172 <.001 *** 0.670 0.020 34.026 <.001 *** 
CLASSIFICATION2 0.036 0.044 0.820 0.413     0.034 0.044 0.773 0.440   
CLASSIFICATION3 -0.023 0.094 -0.243 0.808     -0.008 0.093 -0.082 0.935   
CLASSIFICATION4 -0.006 0.192 -0.031 0.975     0.012 0.193 0.061 0.951   
hspct2 0.563 0.123 4.590 <.001 *** 0.551 0.123 4.468 <.001 *** 
sexW 0.054 0.029 1.875 0.061 .   0.056 0.029 1.927 0.054 . 
transferredhours 0.002 0.001 1.660 0.097 .   0.002 0.001 1.852 0.064 . 
majorschool3 0.083 0.202 0.409 0.682     0.130 0.206 0.632 0.527   
majorschool4 0.042 0.074 0.565 0.572     0.038 0.074 0.517 0.605   
majorschool5 0.109 0.156 0.696 0.487     0.083 0.154 0.539 0.590   
majorschool9 0.162 0.415 0.390 0.696     -0.019 0.391 -0.049 0.961   
majorschoolC 0.096 0.091 1.057 0.291     0.107 0.090 1.188 0.235   
majorschoolE 0.186 0.057 3.261 0.001 ** 0.187 0.057 3.252 0.001 ** 
majorschoolJ -0.366 0.299 -1.223 0.222     -0.841 0.304 -2.766 0.006 ** 
majorschoolL 0.098 0.041 2.355 0.019 *   0.091 0.042 2.180 0.029 * 
majorschoolN -0.145 0.298 -0.487 0.627     -0.172 0.295 -0.583 0.560   
majorschoolS -0.431 0.242 -1.784 0.075 .   -0.380 0.247 -1.537 0.124   
majorschoolU 0.071 0.041 1.728 0.084 .   0.069 0.041 1.674 0.094 . 
C_HRS_UNDERTAKEN.y 0.026 0.007 4.034 <.001 *** 0.026 0.007 3.945 <.001 *** 

Note. MSE = .50527; sp
2 = 0.006912; ss

2=0.001141; *p < .05; **p < .01; ***p < .001 



 
 
 

297 

Table D18 Full regression output for cluster-robust standard errors models in the 
Economics course sequence (mean split) before and after adjustment 

Note. *p < .05; **p < .01; ***p < .001 

Variable Unadjusted   Adjusted 
Estimate SE d.f. p-value     Estimate SE d.f. p-value   

Intercept -1.082 0.640 80.9 0.094 .   -1.054 0.648 79.09 0.108   
High RP 0.070 0.038 67.6 0.069 .   0.067 0.038 67.65 0.082 . 
SAT equivalent 0.001 0.000 69.2 <.001 *** 0.001 0.000 68.76 <.001 *** 
derivationAI 0.145 0.207 11.3 0.500     0.161 0.206 10.96 0.452   
derivationA -0.088 0.088 41.3 0.323     -0.082 0.087 39.50 0.353   
derivationB2eH -0.070 0.281 10.7 0.807     0.044 0.298 8.73 0.887   
derivationB -0.152 0.126 46.1 0.231     -0.177 0.132 41.14 0.186   
derivationF 0.069 0.133 46.3 0.607     0.043 0.130 37.98 0.742   
derivationHPI 0.100 0.333 3.4 0.781     0.110 0.335 3.36 0.762   
derivationH -0.121 0.089 43.0 0.181     -0.117 0.087 41.47 0.186   
derivationU -0.317 0.223 10.7 0.184     -0.321 0.264 6.71 0.266   
derivationW -0.004 0.088 38.0 0.964     0.001 0.086 36.53 0.989   
motheredlevel1 -0.054 0.027 79.4 0.052 .   -0.056 0.028 78.67 0.050 * 
motheredlevel2 0.128 0.141 44.2 0.368     0.178 0.149 41.74 0.238   
motheredlevel3 0.004 0.110 40.3 0.974     0.038 0.118 35.50 0.747   
motheredlevel4 0.144 0.111 44.3 0.201     0.189 0.117 37.10 0.116   
motheredlevel5 0.090 0.101 40.8 0.380     0.134 0.106 33.88 0.215   
motheredlevel6 0.132 0.105 42.5 0.213     0.180 0.109 35.29 0.109   
motheredlevelU 0.164 0.115 47.3 0.162     0.204 0.120 41.11 0.096 . 
fatheredlevel1 0.282 0.179 37.4 0.123     0.371 0.192 35.00 0.061 . 
fatheredlevel2 -0.088 0.150 39.6 0.562     -0.106 0.160 38.92 0.512   
fatheredlevel3 -0.048 0.112 45.4 0.670     -0.089 0.120 40.64 0.464   
fatheredlevel4 -0.073 0.116 48.6 0.532     -0.100 0.125 43.30 0.427   
fatheredlevel5 0.039 0.111 44.3 0.728     0.020 0.118 40.05 0.864   
fatheredlevel6 0.015 0.110 45.1 0.894     -0.006 0.118 40.78 0.957   
fatheredlevelU -0.169 0.135 56.4 0.215     -0.203 0.137 50.12 0.145   
age -0.213 0.176 37.6 0.234     -0.278 0.193 35.00 0.158   
class_zscore.x 0.666 0.024 71.3 <.001 *** 0.666 0.024 70.63 <.001 *** 
CLASSIFICATION2 0.037 0.045 72.6 0.417     0.036 0.047 74.34 0.455   
CLASSIFICATION3 -0.007 0.096 60.3 0.938     0.009 0.099 45.93 0.929   
CLASSIFICATION4 0.011 0.163 19.3 0.949     0.032 0.160 15.50 0.845   
hspct2 0.603 0.143 61.6 <.001 *** 0.596 0.141 57.85 <.001 *** 
sexW 0.057 0.028 63.9 0.049 *   0.057 0.029 63.38 0.055 . 
transferredhours 0.002 0.001 72.8 0.149     0.002 0.001 60.87 0.134   
majorschool3 0.073 0.167 7.6 0.677     0.123 0.212 6.82 0.582   
majorschool4 0.040 0.077 76.5 0.603     0.036 0.078 68.80 0.648   
majorschool5 0.132 0.127 17.6 0.311     0.111 0.128 16.27 0.401   
majorschool9 0.205 0.408 2.1 0.664     0.010 0.479 1.36 0.986   
majorschoolC 0.109 0.089 38.6 0.224     0.123 0.087 37.74 0.166   
majorschoolE 0.195 0.062 65.1 0.002 **   0.198 0.063 61.67 0.003 ** 
majorschoolJ -0.357 0.354 5.5 0.356     -0.829 0.698 1.49 0.390   
majorschoolL 0.109 0.040 65.8 0.008 **   0.104 0.041 68.13 0.013 * 
majorschoolN -0.127 0.159 5.4 0.460     -0.148 0.247 3.37 0.586   
majorschoolS -0.378 0.311 6.7 0.265     -0.327 0.453 5.22 0.501   
majorschoolU 0.081 0.045 65.0 0.075 .   0.081 0.045 63.11 0.076 . 
C_HRS_UNDERTAKEN.y 0.026 0.007 75.4 <.001 *** 0.026 0.007 75.08 <.001 *** 
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Table D19 Full regression output for fixed-effects models in the Government course 
sequence (median split) before and after propensity-score adjustment 

Variable Unadjusted   Adjusted 
Estimate SE t p-value     Estimate SE t p-value   

Intercept -1.144 0.682 -1.679 0.093 .   -0.941 0.615 -1.530 0.126   
High RP 0.044 0.051 0.848 0.397     0.025 0.046 0.540 0.589   
SAT equivalent 0.001 0.000 7.670 <.001 *** 0.001 0.000 6.829 <.001 *** 
derivationAI 0.115 0.303 0.379 0.705     -0.063 0.302 -0.210 0.834   
derivationA 0.022 0.098 0.228 0.820     0.046 0.096 0.477 0.634   
derivationB2eH 0.120 0.202 0.597 0.551     -0.096 0.199 -0.481 0.630   
derivationB -0.085 0.114 -0.748 0.455     -0.066 0.111 -0.595 0.552   
derivationF 0.270 0.145 1.861 0.063 .   0.218 0.141 1.550 0.121   
derivationHPI 0.962 0.443 2.169 0.030 *   1.146 0.583 1.965 0.050 * 
derivationH -0.039 0.094 -0.411 0.681     -0.017 0.093 -0.185 0.853   
derivationU -0.025 0.444 -0.056 0.955     -0.127 0.425 -0.298 0.766   
derivationW 0.010 0.089 0.114 0.909     0.023 0.088 0.267 0.790   
motheredlevel1 0.054 0.134 0.406 0.685     -0.014 0.132 -0.108 0.914   
motheredlevel2 0.064 0.123 0.520 0.603     -0.017 0.122 -0.136 0.892   
motheredlevel3 0.183 0.126 1.446 0.148     0.128 0.124 1.030 0.303   
motheredlevel4 0.241 0.125 1.932 0.054 .   0.164 0.124 1.322 0.186   
motheredlevel5 0.254 0.128 1.981 0.048 *   0.114 0.127 0.897 0.370   
motheredlevel6 0.307 0.136 2.251 0.024 *   0.226 0.135 1.672 0.095 . 
motheredlevelU 0.326 0.171 1.910 0.056 .   0.128 0.168 0.762 0.446   
fatheredlevel1 -0.013 0.141 -0.089 0.929     -0.066 0.140 -0.469 0.639   
fatheredlevel2 0.003 0.124 0.021 0.983     -0.018 0.122 -0.150 0.880   
fatheredlevel3 -0.029 0.126 -0.231 0.817     -0.038 0.124 -0.303 0.762   
fatheredlevel4 -0.041 0.124 -0.330 0.742     -0.002 0.122 -0.015 0.988   
fatheredlevel5 -0.016 0.126 -0.130 0.896     0.053 0.124 0.428 0.669   
fatheredlevel6 -0.035 0.142 -0.248 0.804     -0.006 0.140 -0.040 0.968   
fatheredlevelU -0.061 0.159 -0.385 0.701     -0.026 0.155 -0.171 0.864   
age -0.038 0.026 -1.456 0.145     -0.033 0.025 -1.325 0.185   
class_zscore.x 0.562 0.021 26.926 <.001 *** 0.586 0.021 28.147 <.001 *** 
CLASSIFICATION2 0.072 0.039 1.859 0.063 .   0.088 0.038 2.288 0.022 * 
CLASSIFICATION3 0.076 0.065 1.160 0.246     0.059 0.064 0.922 0.356   
CLASSIFICATION4 0.042 0.103 0.410 0.682     0.165 0.102 1.613 0.107   
hspct2 0.138 0.122 1.134 0.257     0.141 0.120 1.179 0.239   
sexW 0.005 0.033 0.140 0.889     -0.033 0.033 -1.005 0.315   
transferredhours 0.000 0.002 0.025 0.980     -0.001 0.002 -0.412 0.680   
majorschool3 -0.100 0.108 -0.929 0.353     -0.060 0.105 -0.570 0.568   
majorschool4 -0.041 0.066 -0.621 0.535     -0.060 0.065 -0.926 0.354   
majorschool5 -0.115 0.100 -1.148 0.251     -0.095 0.097 -0.978 0.328   
majorschool9 -0.250 0.314 -0.797 0.426     -0.212 0.413 -0.513 0.608   
majorschoolC 0.010 0.069 0.146 0.884     -0.052 0.068 -0.762 0.446   
majorschoolE 0.005 0.059 0.084 0.933     -0.064 0.058 -1.101 0.271   
majorschoolJ 0.077 0.150 0.515 0.606     0.094 0.150 0.629 0.529   
majorschoolL 0.125 0.061 2.057 0.040 *   0.088 0.059 1.471 0.141   
majorschoolN -0.229 0.174 -1.320 0.187     -0.408 0.163 -2.498 0.013 * 
majorschoolS 0.083 0.154 0.541 0.589     0.034 0.143 0.239 0.811   
majorschoolU 0.031 0.060 0.522 0.602     0.040 0.058 0.690 0.490   
C_HRS_UNDERTAKEN.y 0.017 0.007 2.259 0.024 *   0.013 0.007 1.767 0.077 . 

Note. n = 2363; RMSE = 0.7293; df = 2217, R2 = .4491; *p < .05; **p < .01; ***p < .001 
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Table D20 Full regression output for random-effects models in the Government course 
sequence (median split) before and after propensity-score adjustment 

Variable Unadjusted   Adjusted 
Estimate SE t p-value     Estimate SE t p-value   

Intercept -1.442 0.596 -2.418 0.016 *   -1.107 0.567 -1.953 0.051 . 
High RP -0.004 0.059 -0.073 0.943     -0.013 0.053 -0.247 0.814   
SAT equivalent 0.001 0.000 7.699 <.001 *** 0.001 0.000 6.739 <.001 *** 
derivationAI 0.168 0.294 0.570 0.569     -0.163 0.289 -0.565 0.572   
derivationA 0.011 0.096 0.118 0.906     0.025 0.094 0.263 0.793   
derivationB2eH 0.119 0.200 0.596 0.552     -0.113 0.196 -0.574 0.566   
derivationB -0.079 0.113 -0.698 0.485     -0.066 0.109 -0.607 0.544   
derivationF 0.262 0.144 1.820 0.069 .   0.208 0.139 1.498 0.134   
derivationHPI 0.844 0.441 1.914 0.056 .   1.004 0.580 1.730 0.084 . 
derivationH -0.036 0.093 -0.392 0.695     -0.024 0.091 -0.270 0.787   
derivationU 0.056 0.436 0.128 0.898     -0.053 0.419 -0.126 0.900   
derivationW 0.013 0.087 0.151 0.880     0.012 0.086 0.135 0.893   
motheredlevel1 0.095 0.132 0.721 0.471     -0.036 0.024 -1.476 0.140   
motheredlevel2 0.109 0.122 0.890 0.373     -0.001 0.131 -0.008 0.993   
motheredlevel3 0.239 0.125 1.919 0.055 .   0.010 0.121 0.087 0.931   
motheredlevel4 0.296 0.123 2.395 0.017 *   0.169 0.123 1.380 0.168   
motheredlevel5 0.300 0.127 2.369 0.018 *   0.198 0.123 1.612 0.107   
motheredlevel6 0.354 0.135 2.623 0.009 ** 0.141 0.125 1.125 0.261   
motheredlevelU 0.364 0.169 2.155 0.031 *   0.262 0.134 1.954 0.051 . 
fatheredlevel1 0.043 0.138 0.310 0.757     0.153 0.166 0.922 0.356   
fatheredlevel2 -0.011 0.123 -0.092 0.927     0.008 0.137 0.056 0.956   
fatheredlevel3 -0.048 0.124 -0.389 0.697     -0.016 0.121 -0.130 0.897   
fatheredlevel4 -0.058 0.123 -0.473 0.636     -0.049 0.122 -0.401 0.689   
fatheredlevel5 -0.041 0.125 -0.333 0.739     0.000 0.121 0.001 0.999   
fatheredlevel6 -0.036 0.141 -0.259 0.795     0.048 0.123 0.390 0.697   
fatheredlevelU -0.078 0.157 -0.497 0.619     0.004 0.139 0.030 0.976   
age -0.036 0.026 -1.421 0.155     -0.028 0.153 -0.182 0.855   
class_zscore.x 0.559 0.020 27.363 <.001 *** 0.585 0.020 28.655 <.001 *** 
CLASSIFICATION2 0.061 0.038 1.622 0.105     0.074 0.037 2.000 0.046 * 
CLASSIFICATION3 0.059 0.063 0.936 0.349     0.036 0.062 0.580 0.562   
CLASSIFICATION4 -0.022 0.100 -0.219 0.826     0.117 0.098 1.189 0.235   
hspct2 0.205 0.120 1.709 0.088 .   0.193 0.118 1.643 0.101   
sexW 0.001 0.033 0.021 0.984     -0.045 0.032 -1.410 0.159   
transferredhours 0.000 0.002 0.022 0.983     -0.001 0.002 -0.515 0.607   
majorschool3 -0.101 0.106 -0.951 0.342     -0.056 0.104 -0.541 0.589   
majorschool4 -0.023 0.065 -0.349 0.727     -0.049 0.064 -0.775 0.438   
majorschool5 -0.076 0.098 -0.771 0.441     -0.070 0.095 -0.740 0.460   
majorschool9 -0.260 0.309 -0.843 0.399     -0.236 0.408 -0.578 0.563   
majorschoolC 0.031 0.068 0.447 0.655     -0.042 0.067 -0.634 0.526   
majorschoolE 0.028 0.058 0.492 0.623     -0.049 0.057 -0.871 0.384   
majorschoolJ 0.055 0.148 0.370 0.711     0.069 0.147 0.471 0.638   
majorschoolL 0.142 0.060 2.372 0.018 *   0.097 0.058 1.667 0.096 . 
majorschoolN -0.137 0.172 -0.799 0.425     -0.343 0.162 -2.122 0.034 * 
majorschoolS 0.080 0.152 0.528 0.598     0.048 0.140 0.345 0.730   
majorschoolU 0.055 0.059 0.932 0.352     0.050 0.057 0.873 0.383   
C_HRS_UNDERTAKEN.y 0.014 0.007 1.975 0.048 *   0.012 0.007 1.745 0.081 . 

Note. MSE = .53282; sp
2 = 0.00434; ss

2=0.01544; *p < .05; **p < .01; ***p < .001 
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Table D21 Full regression output for cluster-robust standard errors models in the 
Government course sequence (median split) before and after adjustment 

Note. *p < .05; **p < .01; ***p < .001 

Variable Unadjusted   Adjusted 
Estimate SE d.f. p-value     Estimate SE d.f. p-value   

Intercept -1.474 0.625 81.3 0.021 *   -1.439 0.771 10.71 0.090 . 
High RP -0.055 0.037 14.4 0.152     -0.072 0.043 11.06 0.121   
SAT equivalent 0.001 0.000 87.5 <0.001 *** 0.001 0.000 7.97 <0.001 *** 
derivationAI 0.228 0.205 7.4 0.301     -0.393 0.721 1.30 0.664   
derivationA 0.022 0.080 64.1 0.789     0.001 0.096 12.03 0.990   
derivationB2eH 0.119 0.226 20.7 0.605     -0.085 0.202 4.96 0.691   
derivationB -0.049 0.116 73.2 0.671     -0.106 0.164 9.92 0.532   
derivationF 0.282 0.147 50.4 0.061 .   0.217 0.208 11.39 0.318   
derivationHPI 0.783 0.174 2.3 0.036 *   0.886 0.311 2.55 0.079 . 
derivationH -0.017 0.086 61.1 0.844     -0.049 0.126 11.96 0.704   
derivationU 0.119 0.700 2.2 0.880     -0.114 0.650 1.66 0.879   
derivationW 0.038 0.070 55.5 0.587     0.011 0.089 11.69 0.902   
motheredlevel1 -0.035 0.026 78.9 0.185     -0.027 0.034 9.19 0.447   
motheredlevel2 0.091 0.166 50.6 0.586     0.006 0.180 5.56 0.976   
motheredlevel3 0.126 0.141 40.8 0.378     0.007 0.169 4.80 0.969   
motheredlevel4 0.263 0.139 41.0 0.066 .   0.160 0.152 5.21 0.339   
motheredlevel5 0.311 0.145 40.0 0.038 *   0.147 0.167 5.17 0.417   
motheredlevel6 0.321 0.141 42.4 0.028 *   0.124 0.167 5.37 0.491   
motheredlevelU 0.368 0.149 42.2 0.018 *   0.274 0.143 5.44 0.109   
fatheredlevel1 0.366 0.249 44.2 0.149     0.142 0.239 3.82 0.587   
fatheredlevel2 0.077 0.151 46.4 0.614     -0.039 0.140 6.12 0.787   
fatheredlevel3 -0.002 0.123 34.4 0.985     0.001 0.115 4.40 0.993   
fatheredlevel4 -0.040 0.131 37.3 0.764     -0.056 0.139 5.89 0.699   
fatheredlevel5 -0.057 0.124 34.5 0.652     0.020 0.135 5.20 0.885   
fatheredlevel6 -0.038 0.124 35.6 0.763     0.049 0.134 5.26 0.731   
fatheredlevelU -0.026 0.146 36.6 0.859     0.075 0.172 6.02 0.679   
age -0.074 0.195 39.2 0.708     -0.019 0.181 3.83 0.922   
class_zscore.x 0.558 0.027 82.6 <0.001 *** 0.573 0.027 12.25 <0.001 *** 
CLASSIFICATION2 0.050 0.037 74.5 0.187     0.014 0.042 11.45 0.741   
CLASSIFICATION3 0.054 0.058 78.7 0.355     -0.031 0.078 11.23 0.702   
CLASSIFICATION4 -0.056 0.096 54.5 0.557     0.054 0.107 7.92 0.627   
hspct2 0.203 0.139 94.4 0.147     0.231 0.200 8.69 0.280   
sexW -0.009 0.033 88.5 0.784     -0.059 0.046 10.51 0.225   
transferredhours 0.001 0.002 97.4 0.675     -0.001 0.002 14.58 0.800   
majorschool3 -0.085 0.114 53.4 0.460     -0.105 0.106 4.55 0.372   
majorschool4 -0.008 0.063 68.5 0.897     -0.027 0.058 9.93 0.652   
majorschool5 -0.042 0.095 78.1 0.658     -0.034 0.100 27.87 0.736   
majorschool9 -0.270 0.205 3.9 0.259     -0.231 0.211 4.30 0.331   
majorschoolC 0.044 0.060 65.7 0.470     0.006 0.082 11.78 0.943   
majorschoolE 0.045 0.054 59.0 0.409     -0.016 0.064 10.58 0.808   
majorschoolJ 0.035 0.151 26.5 0.818     0.036 0.117 9.22 0.763   
majorschoolL 0.153 0.058 63.3 0.011 *   0.156 0.063 12.35 0.029 * 
majorschoolN -0.084 0.290 17.9 0.776     -0.426 0.483 3.44 0.435   
majorschoolS 0.120 0.107 26.2 0.275     0.103 0.135 1.85 0.529   
majorschoolU 0.070 0.051 59.0 0.174     0.078 0.078 11.93 0.341   
C_HRS_UNDERTAKEN.y 0.014 0.008 85.2 0.080 .   0.013 0.010 9.07 0.202   
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Table D22 Full regression output for fixed-effects models in the Government course 
sequence (mean split) before and after propensity-score adjustment 

Variable Unadjusted   Adjusted 
Estimate SE t p-value     Estimate SE t p-value   

Intercept -1.011 0.673 -1.503 0.133     -0.861 0.693 -1.243 0.214   
High RP -0.044 0.065 -0.681 0.496     -0.026 0.061 -0.420 0.674   
SAT equivalent 0.001 0.000 7.654 <.001 *** 0.001 0.000 7.222 <.001 *** 
derivationAI 0.113 0.303 0.374 0.708     -0.036 0.309 -0.118 0.906   
derivationA 0.022 0.098 0.225 0.822     0.089 0.096 0.922 0.357   
derivationB2eH 0.121 0.202 0.603 0.547     0.263 0.206 1.277 0.202   
derivationB -0.085 0.114 -0.742 0.458     -0.075 0.113 -0.663 0.507   
derivationF 0.270 0.145 1.860 0.063 .   0.276 0.140 1.970 0.049 * 
derivationHPI 0.954 0.444 2.150 0.032 *   0.954 0.570 1.675 0.094 . 
derivationH -0.037 0.094 -0.397 0.692     0.006 0.093 0.066 0.947   
derivationU -0.022 0.444 -0.051 0.960     0.415 0.447 0.928 0.354   
derivationW 0.010 0.089 0.115 0.908     0.071 0.087 0.819 0.413   
motheredlevel1 0.059 0.134 0.442 0.659     0.066 0.133 0.492 0.623   
motheredlevel2 0.065 0.123 0.525 0.600     0.062 0.126 0.495 0.621   
motheredlevel3 0.186 0.126 1.471 0.141     0.192 0.128 1.497 0.134   
motheredlevel4 0.242 0.125 1.937 0.053 .   0.224 0.127 1.771 0.077 . 
motheredlevel5 0.255 0.128 1.994 0.046 *   0.248 0.130 1.907 0.057 . 
motheredlevel6 0.310 0.136 2.274 0.023 *   0.318 0.138 2.308 0.021 * 
motheredlevelU 0.324 0.170 1.901 0.057 .   0.438 0.171 2.565 0.010 * 
fatheredlevel1 -0.013 0.140 -0.096 0.923     0.001 0.143 0.004 0.997   
fatheredlevel2 0.002 0.124 0.017 0.986     0.059 0.128 0.461 0.645   
fatheredlevel3 -0.029 0.126 -0.226 0.821     -0.034 0.130 -0.259 0.796   
fatheredlevel4 -0.040 0.124 -0.325 0.745     -0.023 0.128 -0.178 0.859   
fatheredlevel5 -0.017 0.126 -0.137 0.891     -0.003 0.130 -0.020 0.984   
fatheredlevel6 -0.035 0.142 -0.245 0.807     0.017 0.146 0.116 0.907   
fatheredlevelU -0.062 0.159 -0.391 0.696     -0.124 0.161 -0.772 0.440   
age -0.043 0.026 -1.659 0.097 .   -0.050 0.026 -1.902 0.057 . 
class_zscore.x 0.562 0.021 26.969 <.001 *** 0.563 0.021 26.988 <.001 *** 
CLASSIFICATION2 0.078 0.039 2.010 0.045 *   0.088 0.039 2.255 0.024 * 
CLASSIFICATION3 0.083 0.065 1.268 0.205     0.110 0.065 1.682 0.093 . 
CLASSIFICATION4 0.059 0.103 0.571 0.568     0.121 0.104 1.167 0.243   
hspct2 0.141 0.122 1.154 0.249     0.065 0.122 0.534 0.594   
sexW 0.004 0.033 0.120 0.904     0.018 0.033 0.527 0.598   
transferredhours 0.000 0.002 0.047 0.963     0.000 0.002 -0.062 0.951   
majorschool3 -0.100 0.108 -0.932 0.351     -0.116 0.106 -1.093 0.274   
majorschool4 -0.041 0.066 -0.622 0.534     -0.026 0.066 -0.392 0.695   
majorschool5 -0.113 0.100 -1.126 0.260     -0.128 0.100 -1.277 0.202   
majorschool9 -0.252 0.314 -0.804 0.422     -0.228 0.305 -0.746 0.456   
majorschoolC 0.009 0.069 0.132 0.895     0.020 0.070 0.288 0.773   
majorschoolE 0.008 0.059 0.134 0.894     0.018 0.059 0.307 0.759   
majorschoolJ 0.082 0.149 0.551 0.581     0.076 0.148 0.515 0.607   
majorschoolL 0.127 0.061 2.088 0.037 *   0.127 0.060 2.101 0.036 * 
majorschoolN -0.231 0.174 -1.329 0.184     -0.175 0.175 -0.999 0.318   
majorschoolS 0.075 0.154 0.484 0.629     0.096 0.156 0.616 0.538   
majorschoolU 0.033 0.060 0.559 0.576     0.028 0.059 0.476 0.634   
C_HRS_UNDERTAKEN.y 0.016 0.007 2.245 0.025 *   0.018 0.007 2.452 0.014 * 

Note. n = 2363; RMSE = 0.7294; df = 2217, R2 = .4490; *p < .05; **p < .01; ***p < .001 
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Table D23 Full regression output for random-effects models in the Government course 
sequence (mean split) before and after propensity-score adjustment 

Variable Unadjusted   Adjusted 
Estimate SE t p-value     Estimate SE t p-value   

Intercept -1.421 0.594 -2.391 0.017 *   -1.235 0.599 -2.063 0.039 * 
High RP -0.057 0.047 -1.222 0.243     -0.051 0.047 -1.099 0.296   
SAT equivalent 0.001 0.000 7.704 <.001 *** 0.001 0.000 7.268 <.001 *** 
derivationAI 0.157 0.294 0.533 0.594     -0.136 0.290 -0.470 0.639   
derivationA 0.013 0.096 0.131 0.896     0.082 0.095 0.870 0.384   
derivationB2eH 0.119 0.200 0.597 0.551     0.276 0.204 1.350 0.177   
derivationB -0.076 0.113 -0.670 0.503     -0.057 0.111 -0.514 0.607   
derivationF 0.265 0.144 1.839 0.066 .   0.283 0.139 2.035 0.042 * 
derivationHPI 0.825 0.441 1.868 0.062 .   0.858 0.570 1.506 0.132   
derivationH -0.036 0.093 -0.386 0.699     0.009 0.091 0.104 0.917   
derivationU 0.056 0.436 0.128 0.898     0.448 0.440 1.018 0.309   
derivationW 0.014 0.087 0.165 0.869     0.079 0.086 0.922 0.357   
motheredlevel1 0.096 0.132 0.728 0.467     -0.045 0.026 -1.753 0.080 . 
motheredlevel2 0.111 0.122 0.914 0.361     0.107 0.132 0.809 0.419   
motheredlevel3 0.243 0.125 1.950 0.051 .   0.112 0.124 0.899 0.369   
motheredlevel4 0.299 0.123 2.421 0.016 *   0.251 0.126 1.986 0.047 * 
motheredlevel5 0.304 0.127 2.398 0.017 *   0.287 0.125 2.293 0.022 * 
motheredlevel6 0.360 0.135 2.669 0.008 ** 0.306 0.128 2.386 0.017 * 
motheredlevelU 0.367 0.169 2.176 0.030 *   0.375 0.137 2.749 0.006 ** 
fatheredlevel1 0.044 0.138 0.320 0.749     0.481 0.169 2.840 0.005 ** 
fatheredlevel2 -0.012 0.123 -0.098 0.922     0.063 0.140 0.448 0.654   
fatheredlevel3 -0.048 0.124 -0.386 0.699     0.039 0.126 0.311 0.755   
fatheredlevel4 -0.059 0.123 -0.484 0.628     -0.053 0.128 -0.412 0.681   
fatheredlevel5 -0.041 0.125 -0.331 0.741     -0.048 0.126 -0.379 0.705   
fatheredlevel6 -0.039 0.141 -0.278 0.781     -0.032 0.128 -0.254 0.800   
fatheredlevelU -0.081 0.157 -0.518 0.605     0.008 0.144 0.057 0.955   
age -0.036 0.026 -1.416 0.157     -0.142 0.159 -0.896 0.370   
class_zscore.x 0.559 0.020 27.368 <.001 *** 0.561 0.020 27.465 <.001 *** 
CLASSIFICATION2 0.062 0.037 1.648 0.100 .   0.075 0.038 1.989 0.047 * 
CLASSIFICATION3 0.058 0.063 0.923 0.356     0.087 0.063 1.374 0.170   
CLASSIFICATION4 -0.025 0.099 -0.250 0.803     0.046 0.100 0.458 0.647   
hspct2 0.205 0.120 1.709 0.088 .   0.135 0.120 1.128 0.260   
sexW 0.000 0.033 0.004 0.997     0.014 0.033 0.427 0.669   
transferredhours 0.000 0.002 0.018 0.986     0.000 0.002 0.031 0.976   
majorschool3 -0.103 0.106 -0.972 0.331     -0.115 0.104 -1.100 0.272   
majorschool4 -0.023 0.065 -0.355 0.722     -0.009 0.064 -0.143 0.886   
majorschool5 -0.077 0.098 -0.787 0.431     -0.086 0.098 -0.876 0.381   
majorschool9 -0.262 0.309 -0.849 0.396     -0.244 0.299 -0.817 0.414   
majorschoolC 0.029 0.068 0.430 0.668     0.041 0.069 0.604 0.546   
majorschoolE 0.029 0.058 0.493 0.622     0.040 0.058 0.703 0.482   
majorschoolJ 0.050 0.148 0.339 0.734     0.059 0.147 0.402 0.688   
majorschoolL 0.140 0.060 2.353 0.019 *   0.147 0.059 2.481 0.013 * 
majorschoolN -0.137 0.172 -0.797 0.425     -0.097 0.174 -0.557 0.578   
majorschoolS 0.074 0.152 0.483 0.629     0.095 0.154 0.621 0.535   
majorschoolU 0.055 0.059 0.935 0.350     0.052 0.058 0.893 0.372   
C_HRS_UNDERTAKEN.y 0.014 0.007 1.989 0.047 *   0.016 0.007 2.215 0.027 * 

Note. MSE = .53304; sp
2 = 0.003631; ss

2=0.01480; *p < .05; **p < .01; ***p < .001 
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Table D24 Full regression output for cluster-robust standard errors models in the 
Government course sequence (mean split) before and after adjustment 

Variable Unadjusted   Adjusted 
Estimate SE d.f. p-value     Estimate SE d.f. p-value   

Intercept -1.471 0.624 82.0 0.021 *   -0.929 0.811 18.27 0.267   
High RP -0.023 0.044 26.8 0.608     -0.034 0.047 22.14 0.470   
SAT equivalent 0.001 0.000 88.1 <0.001 *** 0.001 0.000 11.27 0.002 ** 
derivationAI 0.229 0.209 7.4 0.307     -0.264 0.605 1.50 0.718   
derivationA 0.023 0.080 64.2 0.775     0.020 0.084 20.37 0.818   
derivationB2eH 0.118 0.227 20.7 0.608     -0.104 0.220 4.07 0.660   
derivationB -0.050 0.116 73.1 0.668     -0.041 0.134 13.66 0.765   
derivationF 0.284 0.147 50.4 0.059 .   0.260 0.149 12.41 0.105   
derivationHPI 0.789 0.174 2.3 0.035 *   0.876 0.240 2.46 0.049 * 
derivationH -0.017 0.086 61.1 0.845     -0.014 0.102 20.43 0.892   
derivationU 0.120 0.705 2.2 0.880     0.027 0.688 2.28 0.972   
derivationW 0.039 0.070 55.5 0.581     0.022 0.075 18.86 0.776   
motheredlevel1 -0.036 0.027 79.5 0.186     -0.044 0.033 15.94 0.198   
motheredlevel2 0.091 0.166 50.6 0.587     -0.011 0.161 7.91 0.946   
motheredlevel3 0.127 0.141 40.8 0.374     0.039 0.148 5.73 0.801   
motheredlevel4 0.263 0.139 41.0 0.065 .   0.195 0.129 6.42 0.178   
motheredlevel5 0.311 0.145 40.0 0.038 *   0.214 0.142 6.05 0.181   
motheredlevel6 0.321 0.141 42.3 0.028 *   0.165 0.145 6.46 0.295   
motheredlevelU 0.368 0.149 42.2 0.018 *   0.280 0.127 7.00 0.063 . 
fatheredlevel1 0.369 0.249 44.1 0.145     0.174 0.219 5.59 0.460   
fatheredlevel2 0.080 0.152 46.4 0.603     0.062 0.153 8.81 0.695   
fatheredlevel3 0.001 0.123 34.5 0.992     0.001 0.111 5.72 0.994   
fatheredlevel4 -0.038 0.131 37.3 0.776     -0.034 0.128 7.29 0.800   
fatheredlevel5 -0.052 0.125 34.5 0.678     0.028 0.134 6.58 0.839   
fatheredlevel6 -0.035 0.124 35.6 0.781     0.068 0.133 6.65 0.626   
fatheredlevelU -0.024 0.146 36.6 0.868     0.024 0.162 7.87 0.885   
age -0.073 0.195 39.2 0.710     -0.030 0.167 4.83 0.865   
class_zscore.x 0.557 0.027 82.5 <0.001 *** 0.581 0.026 19.58 <0.001 *** 
CLASSIFICATION2 0.053 0.038 78.0 0.163     0.074 0.048 25.32 0.136   
CLASSIFICATION3 0.056 0.058 79.4 0.341     0.025 0.077 17.85 0.745   
CLASSIFICATION4 -0.056 0.095 55.1 0.557     0.096 0.103 9.62 0.378   
hspct2 0.200 0.140 94.3 0.155     0.198 0.180 12.24 0.293   
sexW -0.009 0.033 88.5 0.798     -0.056 0.041 22.25 0.186   
transferredhours 0.001 0.002 97.4 0.687     -0.001 0.002 27.66 0.820   
majorschool3 -0.081 0.114 53.3 0.482     -0.015 0.136 12.25 0.914   
majorschool4 -0.007 0.063 68.6 0.915     -0.028 0.061 17.53 0.647   
majorschool5 -0.047 0.095 78.3 0.626     -0.046 0.102 32.36 0.651   
majorschool9 -0.265 0.206 3.9 0.270     -0.237 0.212 4.18 0.325   
majorschoolC 0.043 0.060 65.5 0.476     -0.040 0.076 17.68 0.603   
majorschoolE 0.046 0.054 59.0 0.401     -0.031 0.061 19.18 0.614   
majorschoolJ 0.033 0.151 26.5 0.828     0.048 0.130 16.53 0.719   
majorschoolL 0.153 0.059 63.4 0.011 *   0.110 0.065 24.08 0.103   
majorschoolN -0.085 0.291 17.9 0.774     -0.296 0.364 3.60 0.465   
majorschoolS 0.122 0.107 26.3 0.267     0.056 0.152 1.71 0.752   
majorschoolU 0.070 0.051 59.0 0.174     0.064 0.065 21.04 0.338   
C_HRS_UNDERTAKEN.y 0.014 0.008 85.1 0.075 .   0.013 0.010 19.58 0.192   
Note. *p < .05; **p < .01; ***p < .001 
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